Localized necking predictions based on rate-independent self-consistent polycrystal plasticity: Bifurcation analysis versus imperfection approach
Article dans une revue avec comité de lecture
Date
2017Journal
International Journal of PlasticityAbstract
The present study focuses on the development of a relevant numerical tool for predicting the onset of localized necking in polycrystalline aggregates. The latter are assumed to be representative of thin metal sheets. In this tool, a micromechanical model, based on the rate-independent self-consistent multi-scale scheme, is developed to accurately describe the mechanical behavior of polycrystalline aggregates from that of their single crystal constituents. In the current paper, the constitutive framework at the single crystal scale follows a finite strain formulation of the rate-independent theory of crystal elastoplasticity. To predict the occurrence of localized necking in polycrystalline aggregates, this micromechanical modeling is combined with two main strain localization approaches: the bifurcation analysis and the initial imperfection method. The formulation of both strain localization indicators takes into consideration the plane stress conditions to which thin metal sheets are subjected during deformation. From a numerical point of view, strain localization analysis with this crystal plasticity approach can be viewed as a strongly nonlinear problem. Hence, several numerical algorithms and techniques are developed and implemented in the aim of efficiently solving this non-linear problem. Various simulation results obtained by the application of the developed numerical tool are presented and extensively discussed. It is demonstrated from these results that the predictions obtained with the MarciniakeKuczynski procedure tend towards those yielded by the bifurcation theory, when the initial imperfection ratio tends towards zero. Furthermore, the above result is shown to be valid for both scale-transition schemes, namely the full-constraint Taylor model and self-consistent scheme.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureIn an incremental formulation suitable to numerical implementation, the use of rate-independent theory of crystal plasticity essentially leads to four fundamental problems. The first is to determine the set of potentially ...
-
Article dans une revue avec comité de lectureAKPAMA, Holanyo K.; BEN BETTAIEB, Mohamed; ABED-MERAIM, Farid (Argentinean Association of Computational Mechanics, Brazilian Association of Computational Mechanics, Mexican Association of Numerical Methods in Engineering and Applied Sciences, 2016)The aim of this paper is to investigate the impact of the microscopic yield surface (i.e., at the single crystal scale) on the forming limit diagrams (FLDs) of face centred cubic (FCC) materials. To predict these FLDs, ...
-
Article dans une revue avec comité de lectureIn an incremental formulation suitable to numerical implementation, the use of rate-independent theory of crystal plasticity essentially leads to four fundamental problems. The first is to determine the set of potentially ...
-
Article dans une revue avec comité de lectureThe main objective of this contribution is to compare the Forming Limit Diagrams (FLDs) predicted by the use of two different vertex theories. The first theory is micromechanical and is based on the use of the ...
-
Article dans une revue avec comité de lectureAKPAMA, Holanyo K.; BEN BETTAIEB, Mohamed; ABED-MERAIM, Farid (Argentinean Association of Computational Mechanics, Brazilian Association of Computational Mechanics, Mexican Association of Numerical Methods in Engineering and Applied Sciences, 2017)The prediction of plastic instability in sheet metals during forming processes represents nowadays an ambitious challenge. To reach this goal, a new numerical approach, based on the loss of ellipticity criterion, is proposed ...