Numerical Simulation of Yield Stress Fluid Flow in Capillary Bundles: Influence of the Form and the Axial Variation in the Cross Section
Article dans une revue avec comité de lecture
Date
2017Journal
Transport in Porous MediaAbstract
In this paper, we investigate possible improvements that can be made to the bundle of capillaries model in order to better represent the flow of yield stress fluids through porous media. This was examined by performing extensive and progressive numerical simulations and by introducing the non-circularity of channels’ cross section and/or its variability along the channels’ axis. It is shown that if only the non-circularity of channels’ cross section is taken into account, a moderate influence is observed on both critical pressure gradient for the flow onset and the flow rate/pressure gradient Q(∇P) relationship. However, the axial variation in capillaries’ cross section has proved to be more impacting the computed flow rate/pressure gradient data. We show hence that when available pore throat and pore body size distributions are used to construct the bundle of axially varying capillaries, the obtained Q(∇P) data do fit well experimental results corresponding to the flow of a Bingham-like fluid through a bed of randomly packed mono-sized spheres.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Communication sans acteRODRIGUEZ DE CASTRO, Antonio; MALVAULT, Guillaume; AHMADI-SENICHAULT, Azita; AMBARI, Abdelhak; BRUNEAU, Denis; CHAMPMARTIN, Stephane; OMARI, Aziz (2012)Current methods used to determine pore size distribution of porous media (as mercury porosimetry) present several drawbacks the main of which is their toxicity An innovative method using yield stress fluids has been proposed ...
-
Conférence invitéeA Yield Stress fluids injection porosimetry Method (YSM) has recently been developed as a simple potential alternative to the extensively used Mercury Intrusion Porosimetry (MIP). Its main advantage is the use of a nontoxic ...
-
Article dans une revue avec comité de lectureThe microscale simulation of colloidal particle transport and deposition in porous media was achieved with a novel colloidal particle tracking model, called 3D-PTPO (Three-Dimensional Particle Tracking model by Python® and ...
-
Communication avec acteLes milieux poreux naturels, comme les sols ou les aquifères, contiennent des particules colloïdales naturelles dont le diamètre est inférieur au micron. Selon des conditions hydrodynamiques et géochimiques, celles-ci ...
-
Article dans une revue avec comité de lectureMultilayer separators are widely used due to their wide shutdown window by combining lower melting tem- perature and higher melting temperature of different layers. With the development of high power lithium-ion batteries, ...