• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • View Item
  • Home
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-Driven Model Order Reduction for Magnetostatic Problem Coupled with Circuit Equations

Type
Articles dans des revues avec comité de lecture
Author
PIERQUIN, Antoine
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - EA 2697 [L2EP]
HENNERON, Thomas
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - EA 2697 [L2EP]
CLENET, Stéphane
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - EA 2697 [L2EP]

URI
http://hdl.handle.net/10985/12497
DOI
10.1109/TMAG.2017.2771358
Date
2017
Journal
Transactions on magnetics

Abstract

Among the model order reduction techniques, the Proper Orthogonal Decomposition (POD) has shown its efficiency to solve magnetostatic and magneto-quasistatic problems in the time domain. However, the POD is intrusive in the sense that it requires the extraction of the matrix system of the full model to build the reduced model. To avoid this extraction, nonintrusive approaches like the Data Driven (DD) methods enable to approximate the reduced model without the access to the full matrix system. In this article, the DD-POD method is applied to build a low dimensional system to solve a magnetostatic problem coupled with electric circuit equations.

Files in this item

Name:
L2EP_TMAG_2017_CLENET.pdf
Size:
1.079Mb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille

Related items

Showing items related by title, author, creator and subject.

  • Benefits of Waveform Relaxation Method and Output Space Mapping for the Optimization of Multirate Systems 
    PIERQUIN, Antoine; BRISSET, Stéphane; HENNERON, Thomas; CLENET, Stéphane (2014)
    We present an optimization problem that requires to model a multirate system, composed of subsystems with different time constants. We use waveform relaxation method in order to simulate such a system. But computation time ...
  • Multirate coupling of controlled rectifier and non-linear finite element model based on Waveform Relaxation Method 
    HENNERON, Thomas; CLENET, Stéphane; PIERQUIN, Antoine; BRISSET, Stéphane (IEEE, 2016)
    To study a multirate system, each subsystem can be solved by a dedicated sofware with respect to the physical problem and the time constant. Then, the problem is the coupling of the solutions of the subsystems. The Waveform ...
  • Model-Order Reduction of Magnetoquasi-Static Problems Based on POD and Arnoldi-Based Krylov Methods 
    PIERQUIN, Antoine; HENNERON, Thomas; CLENET, Stéphane; BRISSET, Stéphane (IEEE, 2015)
    The proper orthogonal decomposition method and Arnoldi-based Krylov projection method are investigated in order to reduce a finite-element model of a quasi-static problem. Both methods are compared on an academic example ...
  • Structure Preserving Model Reduction of Low Frequency Electromagnetic Problem based on POD and DEIM 
    MONTIER, Laurent; PIERQUIN, Antoine; HENNERON, Thomas; CLÉNET, Stéphane (IEEE, 2017)
    The Proper Orthogonal Decomposition (POD) combined with the (Discrete) Empirical Interpolation Method (DEIM) can be used to reduce the computation time of the solution of a Finite Element (FE) model. However, it can lead ...
  • Comparison of DEIM and BPIM to Speed up a POD-based Nonlinear Magnetostatic Model 
    HENNERON, Thomas; MONTIER, Laurent; PIERQUIN, Antoine; CLENET, Stéphane (IEEE, 2017)
    Proper Orthogonal Decomposition (POD) has been successfully used to reduce the size of linear Finite Element (FE) problems, and thus the computational time associated with. When considering a nonlinear behavior law of the ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales