Application of the Proper Generalized Decomposition to Solve MagnetoElectric Problem
Article dans une revue avec comité de lecture
Date
2018Journal
IEEE Transactions on MagneticsAbstract
Among the model order reduction techniques, the Proper Generalized Decomposition (PGD) has shown its efficiency to solve a large number of engineering problems. In this article, the PGD approach is applied to solve a multi-physics problem based on a magnetoelectric device. A reduced model is developed to study the device in its environment based on an Offline/Online approach. In the Offline step, two specific imulations are performed in order to build a PGD reduced model. Then, we obtain a model very well fitted to study in the Online stage the influence of parameters like the frequency or the load. The reduced model of the device is coupled with an electric load (R-L) to illustrate the possibility offered by the PGD.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lecturePIERQUIN, Antoine; HENNERON, Thomas; BRISSET, Stephane; CLENET, Stephane (Wydawnictwo Czasopism i Ksia̜żek Technicznych Sigma, 2015)The modelling of a multirate system -composed of components with heterogeneous time constants- can be done using fixed-point method. This method allows a time-discretization of each subsystem with respect to its own time ...
-
Model-Order Reduction of Magnetoquasi-Static Problems Based on POD and Arnoldi-Based Krylov Methods Communication avec acteThe proper orthogonal decomposition method and Arnoldi-based Krylov projection method are investigated in order to reduce a finite-element model of a quasi-static problem. Both methods are compared on an academic example ...
-
Article dans une revue avec comité de lectureHENNERON, Thomas; PIERQUIN, Antoine; BRISSET, Stéphane; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2016)To study a multirate system, each subsystem can be solved by a dedicated sofware with respect to the physical problem and the time constant. Then, the problem is the coupling of the solutions of the subsystems. The Waveform ...
-
Article dans une revue avec comité de lecturePIERQUIN, Antoine; BRISSET, Stéphane; HENNERON, Thomas; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2014)We present an optimization problem that requires to model a multirate system, composed of subsystems with different time constants. We use waveform relaxation method in order to simulate such a system. But computation time ...
-
Article dans une revue avec comité de lectureTo solve a parametric model in computational electromagnetics, the Finite Element method is often used. To reduce the computational time and the memory requirement, the Finite Element method can be combined with Model Order ...