• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computationally efficient predictions of crystal plasticity based forming limit diagrams using a spectral database

Article dans une revue avec comité de lecture
Author
GUPTA, Akash
216445 George W. Woodruff School of Mechanical Engineering
ccBEN BETTAIEB, Mohamed
ccABED-MERAIM, Farid 
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
243747 Labex DAMAS
KALIDINDI, Surya
216445 George W. Woodruff School of Mechanical Engineering

URI
http://hdl.handle.net/10985/13136
DOI
10.1016/j.ijplas.2018.01.007
Date
2018
Journal
International Journal of Plasticity

Abstract

The present investigation focuses on the development of a fast and robust numerical tool for the prediction of the forming limit diagrams (FLDs) for thin polycrystalline metal sheets using a Taylor-type (full constraints) crystal plasticity model. The incipience of localized necking is numerically determined by the well-known Marciniak–Kuczynski model. The crystal plasticity constitutive equations, on which these computations are based, are known to be highly nonlinear, thus involving computationally very expensive solutions. This presents a major impediment to the wider adoption of crystal plasticity theories in the computation of FLDs. In this work, this limitation is addressed by using a recently developed spectral database approach based on discrete Fourier transforms (DFTs). Significant improvements were made to the prior approach and a new database was created to address this challenge successfully. These extensions are detailed in the present paper. It is shown that the use of the database allows a significant reduction in the computational cost involved in crystal plasticity based FLD predictions (a reduction of about 96% in terms of CPU time).

Files in this item

Name:
LEM3_IJP_2018_GUPTA.pdf
Size:
1.597Mb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Prediction of the Ductility Limit of Magnesium AZ31B Alloy 
    Chapitre d'ouvrage scientifique
    JEDIDI, Mohamed Yassine; ccBEN BETTAIEB, Mohamed; BOUGUECHA, Anas; ccABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; HADDAR, Mohamed (Springer International Publishing, 2019)
    In many engineering applications (automotive, computer and mobile device industries, etc.), magnesium alloys have been widely used owing to their interesting physical and mechanical parameters. However, magnesium alloys ...
  • An anisotropic model with linear perturbation technique to predict HCP sheet metal ductility limit 
    Communication avec acte
    JEDIDI, Mohamed Yassine; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; BOUGUECHA, Anas; HADDAR, Mohamed (2021)
    In this paper, hexagonal closed packed (HCP) sheet metal ductility for a viscoplastic material is analyzed by using a linear perturbation technique. It can be used for the analysis of localized necking. This technique is ...
  • Prediction of necking in HCP sheet metals using a two-surface plasticity model 
    Article dans une revue avec comité de lecture
    JEDIDI, Mohamed Yassine; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; BOUGUECHA, Anas; HADDAR, Mohamed (Elsevier, 2020)
    In the present contribution, a two-surface plasticity model is coupled with several diffuse and localized necking criteria to predict the ductility limits of hexagonal closed packed sheet metals. The plastic strain is ...
  • An Anisotropic Model with Linear Perturbation Technique to Predict HCP Sheet Metal Ductility Limit 
    Chapitre d'ouvrage scientifique
    JEDIDI, Mohamed Yassine; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; BOUGUECHA, Anas; HADDAR, Mohamed (Springer International Publishing, 2022)
    In this paper, hexagonal closed packed (HCP) sheet metal ductility for a viscoplastic material is analyzed by using a linear perturbation technique. It can be used for the analysis of local-ized necking. This technique is ...
  • Prediction of the ductility limit of magnesium AZ31B alloy 
    Communication avec acte
    JEDIDI, Mohamed Yassine; ccBEN BETTAIEB, Mohamed; BOUGUECHA, Anas; ccABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; HADDAR, Mohamed (Springer, 2018)
    In many engineering applications (automotive, computer and mobile device industries, etc.), magnesium alloys have been widely used owing to their interesting physical and mechanical parameters. However, magnesium alloys ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales