• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reduced-order modeling of soft robots

Article dans une revue avec comité de lecture
Author
CHENEVIER, Jean
ccCUETO, Elias
95355 Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
GONZALEZ, David
AGUADO, Jose Vicente
111023 École Centrale de Nantes [ECN]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/14078
DOI
10.1371/journal.pone.0192052
Date
2018
Journal
PLoS ONE

Abstract

We present a general strategy for the modeling and simulation-based control of soft robots. Although the presented methodology is completely general, we restrict ourselves to the analysis of a model robot made of hyperelastic materials and actuated by cables or tendons. To comply with the stringent real-time constraints imposed by control algorithms, a reduced-order modeling strategy is proposed that allows to minimize the amount of online CPU cost. Instead, an offline training procedure is proposed that allows to determine a sort of response surface that characterizes the response of the robot. Contrarily to existing strategies, the proposed methodology allows for a fully non-linear modeling of the soft material in a hyperelastic setting as well as a fully non-linear kinematic description of the movement without any restriction nor simplifying assumption. Examples of different configurations of the robot were analyzed that show the appeal of the method. © 2018 Chenevier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Files in this item

Name:
PIMM-PLO-CHENEVIER-2018.pdf
Size:
9.262Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • PGD-Based Computational Vademecum for Efficient Design, Optimization and Control 
    Article dans une revue avec comité de lecture
    ccCHINESTA SORIA, Francisco; LEYGUE, Adrien; BORDEU, Felipe; AGUADO, Jose Vicente; ccCUETO, Elias; GONZALEZ, David; ALFARO, Icíar; ccAMMAR, Amine; HUERTA, Antonio (Springer Verlag, 2013)
    In this paper we are addressing a new paradigm in the field of simulation-based engineering sciences (SBES) to face the challenges posed by current ICT technologies. Despite the impressive progress attained by simulation ...
  • kPCA-Based Parametric Solutions Within the PGD Framework 
    Article dans une revue avec comité de lecture
    GONZÁLEZ, David; AGUADO, José Vicente; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (Springer Verlag, 2018)
    Parametric solutions make possible fast and reliable real-time simulations which, in turn allow real time optimization, simulation-based control and uncertainty propagation. This opens unprecedented possibilities for robust ...
  • Separated representation of incremental elastoplastic simulations 
    Communication avec acte
    NASRI, Mohamed Aziz; AGUADO, Jose Vicente; ccAMMAR, Amine; ccCUETO, Elias; ccCHINESTA SORIA, Francisco; ccMOREL, Franck; ROBERT, Camille; ccEL AREM, Saber (Key Engineering Materials, 2015)
    Forming processes usually involve irreversible plastic transformations. The calculation in that case becomes cumbersome when large parts and processes are considered. Recently Model Order Reduction techniques opened new ...
  • Hybrid constitutive modeling: data-driven learning of corrections to plasticity models 
    Article dans une revue avec comité de lecture
    IBÁÑEZ, Rubén; GONZÁLEZ, David; DUVAL, Jean Louis; ccCUETO, Elias; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    In recent times a growing interest has arose on the development of data-driven techniques to avoid the employ of phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing ...
  • A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition 
    Article dans une revue avec comité de lecture
    IBAÑEZ, Ruben; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; GONZALEZ, David; ccCUETO, Elias; HUERTA, Antonio; DUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Wiley, 2018)
    Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales