Experimental validation of unsteady models for wind / sails / rigging fluid structure interaction
Communication avec acte
Date
2010Abstract
The aim of this paper is to present the work of experimental validation elements of the aero elastic and unsteady model ARAVANTI. Numerical and Experimental results comparison is made on the rigging and sails of a J80 sail boat. Yacht modelling demands to consider unsteady phenomena resulting from the sea state, variations of wind speed and direction, yacht motion or trimming by the crew. A dedicated instrumentation is developed to measure the loads in shrouds and tension points of the sail, the apparent wind, the yacht motion, the sails flying shape and the navigation data. A special effort is made on sensors calibration, physical measurement comprehension and data synchronisation. Comparison with numerical results shows that the loads and flying shapes are well predicted by the model.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Chapitre d'ouvrage scientifiqueAUGIER, Benoit; DURAND, Mathieu; BOT, Patrick; HAUVILLE, Frederic (Editions de l'Ecole Polytechnique, 2013)The dynamic Fluid Structure Interaction (FSI) of yacht sails submitted to a harmonic pitching motion is numerically investigated to address both issues of aerodynamic unsteadiness and structural deformation. The model ...
-
Article dans une revue avec comité de lectureThis work presents a full scale experimental study on the aero-elastic wind/sails/rig interaction in real navigation conditions with the aim to give an experimental validation of unsteady fluid structure interaction (FSI) ...
-
Article dans une revue avec comité de lectureA numerical investigation of the dynamic Fluid Structure Interaction (FSI) of a yacht sail plan submitted to harmonic pitching is presented to analyse the system's dynamic behaviour and the effects of motion simplifications ...
-
Article dans une revue avec comité de lectureA numerical investigation of the dynamic Fluid Structure Interaction (FSI) of a yacht sail plan submitted to harmonic pitching is presented to address both issues of aerodynamic unsteadiness and structural deformation. The ...
-
Communication avec acteAUGIER, Benoit; DEPARDAY, Julien; DURAND, Mathieu; BOT, Patrick; HAUVILLE, Frederic (Ecole Navale, 2013)A numerical investigation of the dynamic Fluid Structure Interaction (FSI) of a yacht sail plan submitted to harmonic pitching is presented to analyse the effects of motion simplifications and rigging adjustments on ...