• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Institut de Recherche de l’École navale (IRENAV)
  • Voir le document
  • Accueil de SAM
  • Institut de Recherche de l’École navale (IRENAV)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Secured Architecture for Unmanned Surface Vehicle Fleets Management and Control

Communication avec acte
Auteur
MERINO LASO, Pedro
ccBROSSET, David
13094 Institut de Recherche de l'Ecole Navale [IRENAV]
GIRAUD, Marie-Annick

URI
http://hdl.handle.net/10985/15040
DOI
10.1109/dasc/picom/datacom/cyberscitec.2018.00072
Date
2018

Résumé

Network Control Systems (NAC) have been used in many industrial processes. They aim to reduce the human factor burden and efficiently handle the complex process and communication of those systems. Supervisory control and data acquisition (SCADA) systems are used in industrial, infrastructure and facility processes (e.g. manufacturing, fabrication, oil and water pipelines, building ventilation, etc.) Like other Internet of Things (IoT) implementations, SCADA systems are vulnerable to cyber-attacks, therefore, a robust anomaly detection is a major requirement. However, having an accurate anomaly detection system is not an easy task, due to the difficulty to differentiate between cyber-attacks and system internal failures (e.g. hardware failures). In this paper, we present a model that detects anomaly events in a water system controlled by SCADA. Six Machine Learning techniques have been used in building and evaluating the model. The model classifies different anomaly events including hardware failures (e.g. sensor failures), sabotage and cyber-attacks (e.g. DoS and Spoofing). Unlike other detection systems, our proposed work helps in accelerating the mitigation process by notifying the operator with additional information when an anomaly occurs. This additional information includes the probability and confidence level of event(s) occurring. The model is trained and tested using a real-world dataset.

Fichier(s) constituant cette publication

Nom:
IRENAV_IEEE_2018_BROSSET.pdf
Taille:
381.1Ko
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Institut de Recherche de l’École navale (IRENAV)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • A Geographical - Based Multi - Criteria Approach for Marine Energy Farm Planning 
    Article dans une revue avec comité de lecture
    MASLOV, Nicolas; ccBROSSET, David; ccCLARAMUNT, Christophe; CHARPENTIER, Jean-Frederic (MDPI, 2014)
    The objective of this paper is to devise a strategy for developing a flexible tool to efficiently install a marine energy farm in a suitable area. The current methodology is applied to marine tidal current, although it can ...
  • A Human-Centred model for cyber attacks analysis 
    Communication avec acte
    MERIEN, Thibaud; BELLEKENS, Xavier; ccBROSSET, David; ccCLARAMUNT, Christophe (IEEE, 2018)
    Computer networks are ubiquitous and growing exponentially, with a predicted 50 billion devices connected by 2050. This tremendous growth dramatically increases the attack surface of both private and public networks. These ...
  • Improving SIEM for Critical SCADA Water Infrastructures Using Machine Learning 
    Ouvrage scientifique
    HINDY, Hanan; ccBROSSET, David; BAYNE, Ethan; SEEAM, Amar; BELLEKENS, Xavier (Springer International Publishing, 2019)
    Network Control Systems (NAC) have been used in many industrial processes. They aim to reduce the human factor burden and efficiently handle the complex process and communication of those systems. Supervisory control and ...
  • Local and global spatio-temporal entropy indices based on distance- ratios and co-occurrences distributions 
    Article dans une revue avec comité de lecture
    LEIBOVICI, Didier G.; ccCLARAMUNT, Christophe; LE GUYADER, Damien; ccBROSSET, David (Taylor & Francis, 2014)
    When it comes to characterize the distribution of ‘things’ observed spatially and identified by their geometries and attributes, the Shannon entropy has been widely used in different domains such as ecology, regional ...
  • Exploring Geographical Crowd’s Emotions with Twitter 
    Article dans une revue avec comité de lecture
    WAKAMIYA, Shoko; BELOUAER, Lamia; ccBROSSET, David; KAWAI, Yukiko; ccCLARAMUNT, Christophe; SUMIYA, Kazutoshi (2015)
    The research introduced in this paper develops a semantic model whose objective is to analyze the geographical and emotion-based distribution of tweets at a large country scale. The approach extracts and categorizes tweets ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales