• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
  • Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Dempster-Shafer based approach to the detection of trajectory stop points

Article dans une revue avec comité de lecture
Author
HOSSEINPOOR, AMIN
548146 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran [SSGE]
ABBASPOUR, Rahim Ali
548146 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran [SSGE]
CLARAMUNT, Christophe
13094 Institut de Recherche de l'Ecole Navale [IRENAV]

URI
http://hdl.handle.net/10985/15075
DOI
10.1016/j.compenvurbsys.2018.03.007
Date
2018
Journal
Computers, Environment and Urban Systems

Abstract

Nowadays, location-based data collected by GPS-equipped devices such as smartphones and cars are often stored as spatio-temporal sequences of points denoted as trajectories. The analysis of the large generated trajectory databases such as the detection of patterns, outliers, and stops has a great importance for many application domains. Over the past few years, several successful trajectory data infrastructures have been progressively developed for a large range of applications in both the terrestrial and maritime environments. However, it still appears that amongst many research issues to consider, the resulting uncertainties when analyzing local trajectory properties have not been completely taken into account. In particular, determining for instance certainty rates, while detecting stop points, might have valuable impacts on most cases. The framework developed in this paper introduces an approach based on the Dempster-Shafer theory of evidence, and whose objective is to detect trajectory stop points and associated degrees of uncertainty. The approach is experimented using a large urban trajectory database and is compared to several computational algorithms introduced in previous studies. The results show that our approach reduces uncertainty values when detecting trajectory stop points as well as a significant improvement of the recall and precision values.

Files in this item

Name:
IRENAV_CEUS_2018_CLARAMUNT.pdf
Size:
2.156Mb
Format:
PDF
View/Open

Collections

  • Institut de Recherche de l’École navale (IRENAV)

Related items

Showing items related by title, author, creator and subject.

  • A Spatio-Temporal Entropy-based Framework for the Detection of Trajectories Similarity 
    Article dans une revue avec comité de lecture
    HOSSEINPOOR MILAGHARDAN, Amin; ABBASPOUR, Rahim Ali; CLARAMUNT, Christophe (MDPI, 2018)
    The rapid proliferation of sensors and big data repositories offer many new opportunities for data science. Among many application domains, the analysis of large trajectory datasets generated from people’s movements at the ...
  • A Geometric Framework for Detection of Critical Points in a Trajectory Using Convex Hulls 
    Article dans une revue avec comité de lecture
    HOSSEINPOOR MILAGHARDAN, Amin; ABBASPOUR, Rahim Ali; CLARAMUNT, Christophe (MDPI, 2018)
    Large volumes of trajectory-based data require development of appropriate data manipulation mechanisms that will offer efficient computational solutions. In particular, identification of meaningful geometric points of such ...
  • Socio-spatial influence maximization in location-based social networks 
    Article dans une revue avec comité de lecture
    HOSSEINPOOR, Mohammad; MALEK, Mohammad Reza; CLARAMUNT, Christophe (Elsevier, 2019)
    Identifying influential nodes in social networks is a key issue in many domains such as sociology, economy, biology, and marketing. A common objective when studying such networks is to find the minimum number of nodes with ...
  • Design of a spatial database to analyze the forms and responsiveness of an urban environment using an ontological approach 
    Article dans une revue avec comité de lecture
    SILAVI, Tolue; HAKIMPOUR, Farshad; CLARAMUNT, Christophe; NOURIAN, Farshad (Elsevier, 2015)
    This paper introduces a spatial database and ontology-enabled framework that models and operationalizes the relation between urban forms and their responsiveness to the needs of its user. The objective is to offer a framework ...
  • Traitement continu des requêtes dépendantes de la localisation dans des environnements intérieurs 
    Article dans une revue avec comité de lecture
    AFYOUNI, Imad; RAY, Cyril; CLARAMUNT, Christophe; ILARRI, Sergio (Lavoisier, 2015)
    Cet article développe une représentation de données spatiales d’un environnement intérieur dit “indoor” qui tient compte des dimensions contextuelles centrées sur l’utilisateur et aborde les enjeux de gestion de données ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales