• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Institut de Recherche de l’École navale (IRENAV)
  • Voir le document
  • Accueil de SAM
  • Institut de Recherche de l’École navale (IRENAV)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Dempster-Shafer based approach to the detection of trajectory stop points

Article dans une revue avec comité de lecture
Auteur
HOSSEINPOOR, AMIN
548146 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran [SSGE]
ABBASPOUR, Rahim Ali
548146 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran [SSGE]
ccCLARAMUNT, Christophe
13094 Institut de Recherche de l'Ecole Navale [IRENAV]

URI
http://hdl.handle.net/10985/15075
DOI
10.1016/j.compenvurbsys.2018.03.007
Date
2018
Journal
Computers, Environment and Urban Systems

Résumé

Nowadays, location-based data collected by GPS-equipped devices such as smartphones and cars are often stored as spatio-temporal sequences of points denoted as trajectories. The analysis of the large generated trajectory databases such as the detection of patterns, outliers, and stops has a great importance for many application domains. Over the past few years, several successful trajectory data infrastructures have been progressively developed for a large range of applications in both the terrestrial and maritime environments. However, it still appears that amongst many research issues to consider, the resulting uncertainties when analyzing local trajectory properties have not been completely taken into account. In particular, determining for instance certainty rates, while detecting stop points, might have valuable impacts on most cases. The framework developed in this paper introduces an approach based on the Dempster-Shafer theory of evidence, and whose objective is to detect trajectory stop points and associated degrees of uncertainty. The approach is experimented using a large urban trajectory database and is compared to several computational algorithms introduced in previous studies. The results show that our approach reduces uncertainty values when detecting trajectory stop points as well as a significant improvement of the recall and precision values.

Fichier(s) constituant cette publication

Nom:
IRENAV_CEUS_2018_CLARAMUNT.pdf
Taille:
2.156Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Institut de Recherche de l’École navale (IRENAV)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • A Geometric Framework for Detection of Critical Points in a Trajectory Using Convex Hulls 
    Article dans une revue avec comité de lecture
    HOSSEINPOOR MILAGHARDAN, Amin; ABBASPOUR, Rahim Ali; ccCLARAMUNT, Christophe (MDPI, 2018)
    Large volumes of trajectory-based data require development of appropriate data manipulation mechanisms that will offer efficient computational solutions. In particular, identification of meaningful geometric points of such ...
  • A Spatio-Temporal Entropy-based Framework for the Detection of Trajectories Similarity 
    Article dans une revue avec comité de lecture
    HOSSEINPOOR MILAGHARDAN, Amin; ABBASPOUR, Rahim Ali; ccCLARAMUNT, Christophe (MDPI, 2018)
    The rapid proliferation of sensors and big data repositories offer many new opportunities for data science. Among many application domains, the analysis of large trajectory datasets generated from people’s movements at the ...
  • A Quantitative and Qualitative Experimental Framework for the Evaluation of Urban Soundscapes: Application to the City of Sidi Bou Saïd 
    Article dans une revue avec comité de lecture
    HAMMAMI, Mohamed Amin; ccCLARAMUNT, Christophe (MDPI AG, 2024-05-01)
    This research introduces an experimental framework based on 3D acoustic and psycho-acoustic sensors supplemented with ambisonics and sound morphological analysis, whose objective is to study urban soundscapes. A questionnaire ...
  • Spatial models for context-aware indoor navigation systems: A survey 
    Article dans une revue avec comité de lecture
    AFYOUNI, Imad; RAY, Cyril; CLARAMUNT, Christophe (2012-06)
    This paper surveys indoor spatial models developed for research fields ranging from mobile robot mapping, to indoor location-based services (LBS), and most recently to context-aware navigation services applied to indoor ...
  • Design of a spatial database to analyze the forms and responsiveness of an urban environment using an ontological approach 
    Article dans une revue avec comité de lecture
    SILAVI, Tolue; HAKIMPOUR, Farshad; NOURIAN, Farshad; ccCLARAMUNT, Christophe (Elsevier, 2015)
    This paper introduces a spatial database and ontology-enabled framework that models and operationalizes the relation between urban forms and their responsiveness to the needs of its user. The objective is to offer a framework ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales