• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Accurate Third-Order Normal Form Approximation for Power System Nonlinear Analysis

Article dans une revue avec comité de lecture
Author
TIAN, Tian
ccTHOMAS, Olivier
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
AMANO, Hiroyuki
233225 Tokyo Metropolitan University [Tokyo] [TMU]
MESSINA, Arturo Roman
229956 Universidad de Guadalajara
ccKESTELYN, Xavier
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]

URI
http://hdl.handle.net/10985/15159
DOI
10.1109/tpwrs.2017.2737462
Date
2018
Journal
IEEE Transactions on Power Systems

Abstract

The inclusion of higher-order terms in small-signal (modal) analysis has been an intensive research topic in nonlinear power system analysis. Inclusion of second-order terms with the method of normal forms (MNF) has been well developed and investigated, overcoming the linear conventional small-signal methods used in the power system control and stability analysis. However, application of the MNF has not yet been extended to include third-order terms in a mathematically accurate form to account for nonlinear dynamic stability and dynamic modal interactions. Due to the emergence of larger networks and long transmission line with high impedance, modern grids exhibit predominant nonlinear oscillations and existing tools have to be upgraded to cope with this new situation. In this paper, first, fundamentals of normal form theory along with a review of existing tools based on this theory is presented. Second, a new formulation of MNF based on a third-order transformation of the system’s dynamic approximation is proposed and nonlinear indexes are proposed to make possible to give information on the contribution of nonlinearities to the system stability and on the presence of significant third-order modal interactions. The induced benefits of the proposed method are compared to those afforded by existing MNFs. Finally, the proposed method is applied to a standard test system, the IEEE 2-area 4-generator system, and results given by the conventional linear small signal and existing MNFs are compared to the proposed approach. The applicability of the proposed MNF to larger networks with more complex models has been evaluated on the New England–New York 16-machine 5-area system.

Files in this item

Name:
LISPEN_TPS_2018_THOMAS.pdf
Size:
1.613Mb
Format:
PDF
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • A New Fast Track to Nonlinear Modal Analysis of Power System Using Normal Form 
    Article dans une revue avec comité de lecture
    UGWUANYI, Nnaemeka Sunday; ccTHOMAS, Olivier; MARINESCU, Bogdan; MESSINA, Arturo Roman; ccKESTELYN, Xavier (Institute of Electrical and Electronics Engineers, 2020)
    The inclusion of higher-order terms in small-signal (modal) analysis augments the information provided by linear analysis and enables better dynamic characteristic studies on the power system. This can be done by applying ...
  • A Novel Method for Accelerating the Analysis of Nonlinear Behaviour of Power Grids using Normal Form Technique 
    Communication avec acte
    UGWUANYI, Nnaemeka Sunday; ccTHOMAS, Olivier; MARINESCU, Bogdan; ccKESTELYN, Xavier (IEEE, 2019)
    Today's power systems are strongly nonlinear and are becoming more complex with the large penetration of power-electronics interfaced generators. Conventional Linear Modal Analysis does not adequately study such a system ...
  • Power System Nonlinear Modal Analysis Using Computationally Reduced Normal Form Method 
    Article dans une revue avec comité de lecture
    UGWUANYI, Nnaemeka Sunday; MARINESCU, Bogdan; ccTHOMAS, Olivier; ccKESTELYN, Xavier (MDPI, 2020)
    Increasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a ...
  • A normal form-based power system out-of-step protection 
    Article dans une revue avec comité de lecture
    UGWUANYI, Nnaemeka Sunday; ccKESTELYN, Xavier; ccTHOMAS, Olivier; ccMARINESCU, Bogdan; WANG, Bin (Elsevier BV, 2022-07)
    This paper proposes a new system-level application for monitoring out-of-step (OOS) events in power systems. As already known, amplitude-dependent frequency shift is a nonlinear phenomenon of electromechanical oscillations ...
  • Solving Magnetodynamic Problems via Normal Form Method 
    Article dans une revue avec comité de lecture
    UGWUANYI, Nnaemeka S.; ccCLENET, Stephane; ccKESTELYN, Xavier; ccTHOMAS, Olivier (Institute of Electrical and Electronics Engineers (IEEE), 2022-03)
    Closed-form formulations are difficult to find when the material behavior law is nonlinear. A linear approximation, on the other hand, has a very narrow range of validity. In this communication, the Normal Form (NF) method ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales