Mass entrainment-based model for separating flows
Article dans une revue avec comité de lecture
Date
2018Journal
Physical Review FluidsRésumé
Recent studies have shown that entrainment effectively describes the behavior of natural and forced separating flows developing behind bluff bodies, potentially paving the way to new, scalable separation control strategies. In this perspective, we propose a new interpretative framework for separated flows, based on mass entrainment. The cornerstone of the approach is an original model of the mean flow, representing it as a stationary vortex scaling with the mean recirculation length. We test our model on a set of mean separated topologies, obtained by forcing the flow over a descending ramp with a rack of synthetic jets. Our results show that both the circulation of the vortex and its characteristic size scale simply with the intensity of the backflow (the amount of mass going through the recirculation region). This suggests that the vortex model captures the essential functioning of mean mass entrainment, and that it could be used to model and/or predict the mean properties of separated flows. In addition, we use the vortex model to show that the backflow (an integral quantity) can be estimated from a single wall-pressure measurement (a pointwise quantity). This finding encourages further efforts toward industrially deployable control systems based on mass entrainment.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureMOUBOGHA MOUBOGHA, Joseph; MARGALIDA, Gabriel; ROUSSETTE, Olivier; DAZIN, Antoine; JOSEPH, Pierric (MDPI AG, 2022-03)Stall and surge are strong limitations in the operating range of compressors and thus one of the major limits of jet engine performance. A promising way to push the stability limit of compression machines is to inject a ...
-
Communication avec acteThis paper describes the experimental study of the flow behavior in a rotor blade channel of an axial compressor equipped with an Active Flow Control (AFC) system using Particle Image Velocimetry. The AFC system consists ...
-
Communication avec acteDAZIN, Antoine; JOSEPH, Pierric; ROMANÒ, Francesco; GALLAS, Q; MARTY, J; AIGOUY, G; STÔΒEL, M; NIEHUIS, R (IOP Publishing, 2021-01-22)The objective of the ACONIT project is to design, manufacture and test actuators for flow control for an implantation in an aircraft engine. The actuators will fulfil aeronautics requirement in order to increase the ...
-
Article dans une revue avec comité de lectureBARETTER, Alberto; GODARD, Benjamin; ROUSSETTE, Olivier; ROMANÒ, Francesco; BARRIER, Raphael; DAZIN, Antoine; JOSEPH, Pierric (MDPI AG, 2021)On many occasions, fan or compressor stages have to face azimuthal flow distortion at inlet, which affects their performance and stability. These flow distortions can be caused by external events or by some particular ...
-
Article dans une revue avec comité de lectureBARETTER, Alberto; GODARD, Benjamin; JOSEPH, Pierric; ROUSSETTE, Olivier; ROMANO, Francesco; BARRIER, Raphael; DAZIN, Antoine (MDPI AG, 2021-11)On many occasions, fan or compressor stages have to face azimuthal flow distortion at inlet, which affects their performance and stability. These flow distortions can be caused by external events or by some particular ...