Comparison of shoulder kinematic chain models and their influence on kinematics and kinetics in the study of manual wheelchair propulsion
Article dans une revue avec comité de lecture
Date
2019Journal
Medical Engineering and PhysicsRésumé
Several kinematic chains of the upper limbs have been designed in musculoskeletal models to investi- gate various upper extremity activities, including manual wheelchair propulsion. The aim of our study was to compare the effect of an ellipsoid mobilizer formulation to describe the motion of the scapu- lothoracic joint with respect to regression-based models on shoulder kinematics, shoulder kinetics and computational time, during manual wheelchair propulsion activities. Ten subjects, familiar with manual wheelchair propulsion, were equipped with reflective markers and performed start-up and propulsion cycles with an instrumented field wheelchair. Kinematic data obtained from the optoelectronic system and kinetic data measured by the sensors on the wheelchair were processed using the OpenSim software with three shoulder joint modeling versions (ellipsoid mobilizer, regression equations or fixed scapula) of an upper-limb musculoskeletal model. As expected, the results obtained with the three versions of the model varied, for both segment kinematics and shoulder kinetics. With respect to the model based on regression equations, the model describing the scapulothoracic joint as an ellipsoid could capture the kinematics of the upper limbs with higher fidelity. In addition, the mobilizer formulation allowed to com- pute consistent shoulder moments at a low computer processing cost. Further developments should be made to allow a subject-specific definition of the kinematic chain.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lecturePUCHAUD, Pierre; HYBOIS, Samuel; LOMBART, Antoine; BASCOU, Joseph; FODÉ, Pascale; SAURET, Christophe; PILLET, Helene (American Society of Mechanical Engineers, 2019)Multibody kinematic optimization is frequently used to assess shoulder kinematics during manual wheelchair (MWC) propulsion but multiple kinematics chains are available. It is hypothesized that these different kinematic ...
-
Communication avec acteHYBOIS, Samuel; LOMBART, Antoine; PUCHAUD, Pierre; BASCOU, Joseph; LAVASTE, François; SAURET, Constantin; PILLET, Helene (Informa UK Limited, 2017)The aim of this work was to evaluate the influence of the ellipsoid parameters (centre location and radii) on kinematics reconstructed using multibody kinematics optimisation during MWC propulsion.
-
Article dans une revue avec comité de lectureHYBOIS, Samuel; SIEGEL, Alice; BASCOU, Joseph; EYDIEUX, Nicolas; VASLIN, Philippe; FODÉ, Pascale; SAURET, Christophe; PILLET, Helene (Informa Healthcare/Taylor and Francis, 2017)Purpose: Wheelchair locomotion is constraining for the upper limbs and involves a set of motor tasks that need to be learnt by a novice user. To understand this integration process, we investigated the evolution of shoulder ...
-
Article dans une revue avec comité de lectureEYDIEUX, Nicolas; HYBOIS, Samuel; SIEGEL, Alice; BASCOU, Joseph; VASELIN, Philippe; FODÉ, Pascale; SAURET, Christophe; PILLET, Helene (Informa Healthcare/Taylor and Francis, 2020)Purpose: During manual wheelchair (MWC) skill acquisition, users adapt their propulsion technique through changes in biomechanical parameters. This evolution is assumed to be driven towards a more efficient behavior. ...