Mechanical stability of custom-made implants: Numerical study of anatomical device and low elastic Young's modulus alloy
Article dans une revue avec comité de lecture
Date
2017Journal
Materials Science and Engineering: CAbstract
The advent of new manufacturing technologies such as additive manufacturing deeply impacts the approach for the design of medical devices. It is now possible to design custom-made implants based on medical imaging, with complex anatomic shape, and to manufacture them. In this study, two geometrical configurations of implant devices are studied, standard and anatomical. The comparison highlights the drawbacks of the standard configuration, which requires a specific forming by plastic strain in order to be adapted to the patient’s morphology and induces stress field in bones without mechanical load in the implant. The influence of low elastic modulus of the materials on stress distribution is investigated. Two biocompatible alloys having the ability to be used with SLM additive manufacturing are considered, commercial Ti-6Al-4V and Ti-26Nb. It is shown that beyond the geometrical aspect, mechanical compatibility between implants and bones can be significantly improved with the modulus of Ti-26Nb implants compared with the Ti-6Al-4V.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureGEORGE, Daniel; WAGNER, Delphine; BOLENDER, Yves; LAHEURTE, Pascal; PIOTROWSKI, Boris; DIDIER, Paul; BENSIDHOUM, Morad; HERBERT, Valentin; SPINGARN, Camille; RÉMOND, Yves (Informa UK Limited, 2020)Orthodontic treatments are based on a prolonged application of mechanical forces on the teeth through orthodontic appliances, leading to tooth movement due to the remodeling of the surrounding bone. Bone response is dependent ...
-
Article dans une revue avec comité de lectureDIDIER, Paul; LE COZ, Gael; PIOTROWSKI, Boris; BRAVETTI, Pierre; LAHEURTE, Pascal; MOUFKI, Abdelhadi (EDP Sciences, 2022-06)To obtain a functional part from additive manufacturing (AM) technologies, some surfaces require post-processing by machining. An approach is developed using additive manufacturing supports as a clamping device for the ...
-
Article dans une revue avec comité de lectureFAVRE, Julien; LOHMULLER, Paul; PIOTROWSKI, Boris; KENZARI, Samuel; LAHEURTE, Pascal; MERAGHNI, Fodil (Elsevier, 2018)This original work proposes to investigate the transposition of crystallography rules to cubic lattice architectured materials to generate new 3D porous structures. The application of symmetry operations provides a complete ...
-
Article dans une revue avec comité de lectureLOHMULLER, Paul; FAVRE, Julien; PIOTROWSKI, Boris; KENZARI, Samuel; LAHEURTE, Pascal (MDPI, 2018)The continuous design of cubic lattice architecture materials provides a wide range of mechanical properties. It makes possible to control the stress magnitude and the local maxima in the structure. This study reveals some ...
-
Article dans une revue avec comité de lectureLOHMULLER, Paul; FAVRE, Julien; KENZARI, Samuel; PIOTROWSKI, Boris; PELTIER, Laurent; LAHEURTE, Pascal (Elsevier, 2019)This article investigates the elastic properties of a large panel of lattice architectures using a continuous description of geometry. The elastic constants of the orthotropic material are determined, and discussed in terms ...