Microstructure-based study of the crack initaition mechanisms in pure copper under high cycle multiaxial fatigue loading conditions
Article dans une revue avec comité de lecture
Date
2016Journal
Procedia Structural IntegrityAbstract
This paper aims to contribute in understanding the fatigue crack initiation mechanisms in metallic materials under high cycle multiaxial fatigue loadings. It addresses proportional and non-proportional multiaxial loading conditions with the analysis and observation of the cyclic plasticity development (mainly persistent slip band) until crack initiation (especially short cracks) on a pure oxygen-free high conductivity (OFHC) polycristalline copper. Observation and analysis techniques are based mainly on optical microscopy and scanning electron microscopy (SEM). It has been observed that the plastic slip multiplicity in grains seems more important for multiaxial loadings at a stress level corresponding to the same median fatigue strength at 106 cycles of the material. A multiaxial loading induces an additional multiplicity of the plastic slip in grains compared to uniaxial loading condition. For all the loading conditions investigated, although most of the grains exhibits single slip activated, analysis of the preferential crack initiation sites and modes show a higher probability of intragranular microcrack initiation in the multiple slip grains (with more than two slip systems activated). Most multiple slip grains and higher probability of crack initiation in these grains were observed especially for non-proportional multiaxial loadings. Finally, the effects of the biaxiality ratio and the phase shift on the fatigue crack initiation was highlighted.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteThis study provides an analysis of high cycle multiaxial fatigue crack initiation modes based on SEM observations.The statistical study of crack initiation preferential sites shows that grains with multiple slip have a ...
-
Article dans une revue avec comité de lectureRANC, Nicolas; MESSAGER, Alexandre; JUNET, Arnaud; PALIN-LUC, Thierry; BUFFIERE, Jean-Yves; SAINTIER, Nicolas; ELMAY, Wafa; MANCINI, L.; KING, Andrew; NADOT, Yves (Elsevier, 2022-09)Very high cycle fatigue fracture is often associated with internal crack propagation and one major problem to study the initiation and the propagation of this internal crack is to detect its initiation and quantify its ...
-
Article dans une revue avec comité de lectureBecause of the reverse cyclic plastic zone at the crack tip, there is plastic dissipation in heat at the crack tip under cyclic loading. That creates a heterogeneous temperature field around the crack tip. A thermo-mechanical ...
-
Article dans une revue avec comité de lectureBecause of the reverse cyclic plastic zone at the crack tip, there is plastic dissipation in heat at the crack tip under cyclic loading. That creates a heterogeneous temperature field around the crack tip. A thermomechanical ...
-
Article dans une revue avec comité de lectureMESSAGER, Alexandre; JUNET, Arnaud; PALIN-LUC, Thierry; BUFFIERE, Jean-Yves; EL MAY, Mohamed; GAILLARD, Yves; KING, Andrew; BONNIN, Anne; NADOT, Yves; RANC, Nicolas; SAINTIER, Nicolas (Wiley-Blackwell, 2020)This work presents a new ultrasonic fatigue testing device for studying the initiation and propagation mechanisms of internal microstructurally short fatigue cracks using in situ synchrotron tomography. Its principle is ...