Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment
Article dans une revue avec comité de lecture
Article dans une revue avec comité de lecture
Author
Date
2017Journal
Materials Science and Engineering: AAbstract
Nickel based alloys are extensively used in the aerospace industry due to the excellent corrosion resistance and high mechanical properties that are maintained up to elevated temperatures (600–800 °C). However, these superalloys are classified as difficult-to-cut and therefore modelling and simulation of the machining processes has become a key in the machinability assessment of nickel based alloys. The reliability of Finite Element Models (FEM) largely depends on the quality of input parameters, one of the most relevant being the constitutive material model representing work material behavior under high strain, strain rate and temperatures. In order to develop a reliable material model, the present work deals with a complete characterization of Inconel 718. Uniaxial compression tests at testing temperatures close to those found in machining (21–1050 °C) and high strain rates (10°−10 2 s −1 ) were performed on the Gleeble 3500 testing machine. Moreover, the microstructural analysis and microhardness measurements of the testing samples were performed, in order to correlate the microstructural state with the mechanical properties of the Inconel 718. Based on this experimental work, a new coupled empirical model is proposed to describe the particular behaviour of nickel based alloys at elevated temperatures and high strain rates. This material behaviour model introduces softening phenomena as well as the coupling between the temperature and the strain rate known to occur experimentally, for machining FEM simulations with Inconel 718 superalloy.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureITURBE, Ariane; GIRAUD, Eliane; HORMAETXE, Exabier; GARAY, Ainhara; GERMAIN, Guénaël; OSTOLAZA, Koldo; ARRAZOLA, Pedro José (Elsevier, 2019)Corrigendum to “Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment” [Mater. Sci. Eng. A 682 (2017) 441–453]
-
Article dans une revue avec comité de lectureUMBRELLO, Domenico; MATSUMURA, Takashi; ARRAZOLA, Pedro José; GERMAIN, Guénaël; COURBON, Cédric (Springer Science and Business Media LLC, 2022-04-07)AbstractThis paper reports on the state of the art in the experimental and numerical investigations of cutting and machining processes. The contributions on the above-mentioned processes and published on the Proceedings ...
-
Communication avec acteCHAABANI, Sana; RODRIGUEZ, Iñigo; CUESTA, Mikel; AYED, Yessine; ARRAZOLA, Pedro José; GERMAIN, Guénaël (AIP Publishing, 2019)Nickel-based superalloys are widely exploited in turbojets components which are subjected to intense thermal and mechanical loadings during their operation. In fact, they exhibit excellent mechanical properties over a wide ...
-
Article dans une revue avec comité de lectureCHAABANI, Sana; ARRAZOLA, Pedro José; AYED, Yessine; MADARIAGA, Aitor; TIDU, Albert; GERMAIN, Guénaël (Elsevier, 2020)The most important challenges when machining difficult-to-cut alloys used in critical applications consist mainly in increasing tool life as well as improving the component surface integrity. In particular, the nickel based ...
-
Communication avec acteSELA, Andres; ORTIZ-DE-ZARATE, Gorka; SOLER, Daniel; ARISTIMUÑO, Patxi; SORIANO, Denis; GERMAIN, Guénaël; DUCOBU, François; ARRAZOLA, Pedro José (Elsevier BV, 2020)Surface integrity directly affects the mechanical behavior of the workpiece, which is especially relevant on fatigue behavior. To characterize the quality of the machined surface, aspects such as material damage, roughness ...