• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
  • Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast Subject Specific Finite Element Mesh Generation of Knee Joint from Biplanar X-ray Images

Communication sans acte
Author
LAHKAR, Bhrigu
466360 Institut de Biomecanique Humaine Georges Charpak
THOREUX, Patricia
300210 Hôpital Avicenne [AP-HP]
466360 Institut de Biomecanique Humaine Georges Charpak
ccSKALLI, Wafa
466360 Institut de Biomecanique Humaine Georges Charpak

URI
http://hdl.handle.net/10985/16602
Date
2018

Abstract

Numerous finite element (FE) models of the knee joint have been developed to investigate knee pathology, post-surgery assessment and natural knee biomechanics. However, because of the extensive computational effort required for preparing subject specific model from CT-scan or MRI data, most of the models in literature are done only for one subject resulting in poor validation of the model and limits the predictive power of the conclusions. Biplanar X-ray is a promising alternative to perform 3D reconstruction of bony structures because of low radiation dose and very less reconstruction time [1]. Moreover, an accurate and fast computational mesh is a prerequisite for generating subject specific mesh in order to perform personalized FE analysis. Traditionally, both triangular/tetrahedral and quadrilateral/hexahedral FE elements are used for 3D mesh generation. But because of distinct numerical advantages quadrilateral/hexahedral elements are preferred to avoid numerical instability, specifically for problems involving high strains at soft tissues [2]. The aim of the current study is to develop fast and automatic subject specific mesh for knee joint from biplanar X-ray images. This approach was successfully tested for 6 cadaveric specimen, where from the biplanar radiographic images of each, 3D reconstruction models were built with a mean time of about 10 min for each specimen by adapting the strategy of [1]. From the reconstruction models, subject specific mesh (4 noded shell) for bony and cartilage structures were generated based on the mapping from the generic model to subject specific model with about 10 sec of time for each specimen (Fig. 1). Both the meniscus were meshed with 8 noded hex elements using the nodes of femoral and tibial cartilage in a dedicated Matlab code with numerical cost of almost 1 min. So, a total of about 12 min computational time was required to build each subject specific knee from 3D reconstruction to mesh generation which is promising for clinical applications. Quality of mesh for individual specimen was also checked using mesh quality indicators (Jacobian ratio, aspect ratio etc.) and surface representation accuracy, which showed less than 1% (warning only) and 0.8 mm (at soft tissue regions) respectively for individual specimen.

Files in this item

Name:
IBHGC-CMBBE-Lahkar-2018.pdf
Size:
1.168Mb
Format:
PDF
View/Open

Collections

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Related items

Showing items related by title, author, creator and subject.

  • Development and evaluation of a new methodology for Soft Tissue Artifact compensation in the lower limb 
    Article dans une revue avec comité de lecture
    LAHKAR, Bhrigu K.; ccROHAN, Pierre-Yves; ASSI, Ayman; ccPILLET, Helene; BONNET, Xavier; THOREUX, Patricia; ccSKALLI, Wafa (Elsevier BV, 2021)
    Skin Marker (SM) based motion capture is the most widespread technique used for motion analysis. Yet, the accuracy is often hindered by Soft Tissue Artifact (STA). This is a major issue in clinical gait analysis where ...
  • Development and evaluation of a new procedure for subject-specific tensioning of finite element knee ligaments 
    Article dans une revue avec comité de lecture
    LAHKAR, Bhrigu K.; ccROHAN, Pierre-Yves; ccPILLET, Helene; THOREUX, Patricia; ccSKALLI, Wafa (Taylor and Francis, 2021)
    Subject-specific tensioning of ligaments is essential for the stability of the knee joint and represents a challenging aspect in the development of finite element models. We aimed to introduce and evaluate a new procedure ...
  • Fast quasi-automated 3D reconstruction of lower limbs from low dose biplanar radiographs using statistical shape models and contour matching 
    Article dans une revue avec comité de lecture
    GIRINON, François; BAYOUD, Wael; LAHKAR, Bhrigu; BONNET-LEBRUN, Aurore; LAZENNEC, Jean-Yves; ccSKALLI, Wafa; ccROUCH, Philippe; ccGAJNY, Laurent (Elsevier BV, 2022-03)
    Three-dimensional bone reconstructions from medical imaging are essential for biomechanical modelling and are growing tools in clinics. Several methods of lower limbs reconstruction from biplanar radiographs have ...
  • A new method for the evaluation of the end-to-end distance of the knee ligaments and popliteal complex during passive knee flexion 
    Article dans une revue avec comité de lecture
    ROCHCONGAR, Goulven; BERGAMINI, Elena; MOREAU, S; THOREUX, Patricia; ccSKALLI, Wafa; ccROUCH, Philippe; ccPILLET, Helene (2016)
    Background: Accurate knowledge about the length variation of the knee ligaments (ACL, PCL, MCL and LCL) and the popliteal complex during knee flexion/extension is essential for modelling and clinical applications. The aimof ...
  • Analyse séquentielle 3D de la cinématique fémoropatellaire sur genou normal à partir de radiographies biplanaires : protocole de validation in vitro 
    Article dans une revue avec comité de lecture
    DAGNEAUX, Louis; THOREUX, Patricia; EUSTACHE, Boris; CANOVAS, François; ccSKALLI, Wafa (Elsevier BV, 2015)
    Introduction : Caractériser la fonction fémoropatellaire à l’aide de critères cinématiques est essentiel à sa compréhension, à son évaluation et à son suivi. Le but était d’évaluer une méthode d’analyse 3D séquentielle par ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales