• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multistability and localization in forced cyclic symmetric structures modelled by weakly-coupled Duffing oscillators

Article dans une revue avec comité de lecture
Author
PAPANGELO, Antonio
484412 Hamburg University of Technology [TUHH]
FONTANELA, Filipe
69530 Imperial College London
GROLET, Aurélien
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
CIAVARELLA, Michele
484412 Hamburg University of Technology [TUHH]
HOFFMANN, Norbert
69530 Imperial College London
484412 Hamburg University of Technology [TUHH]

URI
http://hdl.handle.net/10985/16779
DOI
10.1016/j.jsv.2018.10.028
Date
2019
Journal
Journal of Sound and Vibration

Abstract

Many engineering structures are composed of weakly coupled sectors assembled in a cyclic and ideally symmetric configuration, which can be simplified as forced Duffing oscillators. In this paper, we study the emergence of localized states in the weakly nonlinear regime. We show that multiple spatially localized solutions may exist, and the resulting bifurcation diagram strongly resembles the snaking pattern observed in a variety of fields in physics, such as optics and fluid dynamics. Moreover, in the transition from the linear to the nonlinear behaviour isolated branches of solutions are identified. Localization is caused by the hardening effect introduced by the nonlinear stiffness, and occurs at large excitation levels. Contrary to the case of mistuning, the presented localization mechanism is triggered by the nonlinearities and arises in perfectly homogeneous systems.

Files in this item

Name:
LISPEN_JSV_2019_GROLET.pdf
Size:
817.8Kb
Format:
PDF
Description:
post refering version
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Comparison of ANM and Predictor-Corrector Method to Continue Solutions of Harmonic Balance Equations 
    Article dans une revue avec comité de lecture
    WOIWODE, Lukas; BALAJI, Nidish Narayanaa; KAPPAUF, Jonas; TUBITA, Fabia; GUILLOT, Louis; VERGEZ, Christophe; COCHELIN, Bruno; GROLET, Aurélien; KRACK, Malte (Springer International Publishing, 2019)
    In this work we apply and compare two numerical path continuation algorithms for solving algebraic equations arising when applying the Harmonic Balance Method to compute periodic regimes of nonlinear dynamical systems. The ...
  • Computation of quasi-periodic localised vibrations in nonlinear cyclic and symmetric structures using harmonic balance methods 
    Article dans une revue avec comité de lecture
    FONTANELA, Filipe; GROLET, Aurélien; SALLES, Loïc; HOFFMANN, Norbert (Elsevier, 2019)
    In this paper we develop a fully numerical approach to compute quasi-periodic vibrations bifurcating from nonlinear periodic states in cyclic and symmetric structures. The focus is on localised oscillations arising from ...
  • Dissipative solitons in forced cyclic and symmetric structures 
    Article dans une revue avec comité de lecture
    HOFFMANN, N.; FONTANELA, Francesco; GROLET, Aurélien; SALLES, Loïc; CHABCHOUB, Amin; CHAMPNEYS, Alan; PATSIAS, Sophoclis; HOFFMANN, Norbert (Elsevier, 2019)
    The emergence of localised vibrations in cyclic and symmetric rotating struc-tures, such as bladed disks of aircraft engines, has challenged engineers in thepast few decades. In the linear regime, localised states ...
  • On the frequency response computation of geometrically nonlinear flat structures using reduced-order finite element models 
    Article dans une revue avec comité de lecture
    GIVOIS, Arthur; GROLET, Aurélien; ccTHOMAS, Olivier; DEÜ, Jean-François (Springer Verlag, 2019)
    This paper presents a general methodology to compute nonlinear frequency responses of flat structures subjected to large amplitude transverse vibrations, within a finite element context. A reduced-order model (ROM)is ...
  • Computation of dynamic transmission error for gear transmission systems using modal decomposition and Fourier series 
    Article dans une revue avec comité de lecture
    ABBOUD, Eddy; GROLET, Aurélien; MAHÉ, Hervé; ccTHOMAS, Olivier (Springer, 2021-11)
    In this paper, a method for computing the dynamics of a geared system excited by its static transmission error is proposed. The method is based on the iterative spectral method (ISM) and on the harmonic balance method ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales