Discrete-element modelling of the grinding contact length combining the wheel-body structure and the surface-topography models
Article dans une revue avec comité de lecture
Date
2016Journal
International Journal of Machine Tools and ManufactureAbstract
Phenomena governing the grinding process are largely related to the nature and evolution of contact between grinding wheel and ground component. The definition of the contact area plays an essential role in the simulation of grinding temperatures, forces or wear. This paper presents a numerical model that simulates the contact between grinding wheel and workpiece in surface grinding. The model reproduces the granular structure of the grinding wheel by means of the discrete element method. The surface topography is applied on the model surface taking into account the dressing mechanisms and movements of a single-point dresser. The individual contacts between abrasive grits and workpiece are studied regarding the uncut chip thickness, assuming viscoplastic material behaviour. Simulation results are evaluated with experimental measurements of the contact length. The results remark the importance of surface topography and dressing conditions on the contact area, as well as wheel deflection.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureANDRE, Damien; CHARLES, Jean-Luc; NEAUPORT, Jérôme; IORDANOFF, Ivan; JEBAHI, Mohamed (Elsevier, 2013)The mechanical behavior of materials is usually simulated by a continuous mechanics approach. However, noncontinuous phenomena such as multi-fracturing cannot be accurately simulated using a continuous description. The ...
-
Article dans une revue avec comité de lectureCurrently, almost all material manufacturing processes are simulated using methods based on continuum approaches such as the Finite Element Method (FEM). These methods, though widely studied, face di culties with multi- ...
-
Communication avec acteDiscrete Model is based on the description of the physical state (velocity, position, temperature, magnetic moment, electric potential ..) of a large number of discrete elements that form the media to be studied. It is not ...
-
Communication avec acteDiscrete Element Method (DEM) uses a set of discrete elements in order to describe the material under study. The reason is that originally it was conceived to describe granular materials. Thus is naturally adapted to ...
-
Communication sans acteDiscrete Model is based on the description of the physical state (velocity, position, temperature, magnetic moment, electric potential ..) of a large number of discrete elements that form the media to be studied. It is not ...