Modeling damages and cracks growth in composite with a 3D discrete element method
Article dans une revue avec comité de lecture
Date
2016Journal
Composites Part B: EngineeringAbstract
This paper presents a 3D simulation of damages and cracks growth in composite material using Discrete Element Method (DEM). Fiber/matrix debonding and ply to ply delamination, cracks matrix, rupture of fibers are addressed. Matrix and fiber are supposed to be brittle materials and follow a linear fracture model. Cohesive contact laws are implemented to model interfaces behavior for both debonding (fiber/ matrix) and delamination (ply/ply). Piecewise linear elastic laws usually used in cohesive zone models are retained in this work. A Double Cantiliver Beam (DCB) test is first experimented using the present DEM with Cohesive Contact Models (CCM). Then, based on De Borst's works [1], a single fiber composite under transverse traction is modeled to study debonding and matrix cracks propagations depending on the matrix and the fiber/matrix interface strengths ratio. A bi-disperse medium for matrix and fiber is specifically elaborated to reduce the discrete elements number. The analysis is extended to a so-called multi-fibers composite specimen, also called Statistical Elementary Volume (SEV), made of several fibers embedded in the matrix. Finally, the results are compared with DeBorst's works and qualitatively discussed.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureThe coupling between two dissimilar numerical methods presents a major challenge, especially in case of discrete–continuum coupling. The Arlequin approach provides a flexible framework and presents several advantages in ...
-
Communication avec acteThe indentation response of glasses can be classified into three classes : normal, anomalous and intermediate depending on the deformation mechanism and the cracking response. Silica glass, as a typical anomalous glass, ...
-
Article dans une revue avec comité de lectureMultiscale modeling aims to solve problems at the engineering (macro) scale while considering the complexity of the microstructure with minimum cost. Generally, two scales are considered in multiscale modeling: small scale, ...
-
Article dans une revue avec comité de lectureThe indentation response of glasses can be classified under three headings: normal, anomalous and intermediate, depending on the deformation mechanism and the cracking response. Silica glass, as a typical anomalous glass, ...
-
Communication sans acteThe response of glasses subjected to high pressures can be classified into three classes : normal, anomalous and intermediate depending on the deformation mechanism and the cracking pattern. The silica glass which is the ...