Biomechanical analysis of the golf swing: methodological effect of angular velocity component on the identification of the kinematic sequence
Article dans une revue avec comité de lecture
Date
2019Journal
Acta of Bioengineering and BiomechanicsAbstract
The golf swing is a complex whole-body motion for which a proximal-to-distal transfer of the segmental angular velocitiesfrom the pelvis to the club is believed to be optimal for maximizing the club head linear velocity. However, previous experimental resultsabout such timing (or kinematic sequence) are contradictory. Nevertheless, methods that were used in these studies differed significantly,in particular, those regarding the component of the angular velocity vector selected for the identification of the kinematic sequence.Hence, the aim of this study was to investigate the effect of angular velocity vector component selection on the identified kinematicsequence. Methods: Thirteen golfers participated in this study and performed driver swings in a motion capture laboratory. Seven meth-ods based on different component selection of segmental angular velocities (vector norm, component normal-to-sagittal, frontal, trans-versal and swing planes, segment longitudinal component and a method mixing longitudinal and swing plane components) were tested.Results: Results showed the critical influence of the component chosen to identify the kinematic sequence with almost as many kine-matic sequences as the number of tested methods for every golfer. Conclusion: One method seems to show the strongest correlation toperformance but none of them can be assessed as a reference method for the identification of the golf swing kinematic sequence. Re-garding the limited time lag between the different peak occurrences and the uncertainty sources of current materials, development ofsimulation studies would be more suitable to identify the optimal kinematic sequence for the golf swing
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteBOURGAIN, Maxime; SAURET, Christophe; MARSAN, Thibault; PEREZ, M. J.; ROUILLON, Olivier; THOREUX, Patricia; ROUCH, Philippe (Informa UK Limited, 2020)Study of variability induced by the methology choice on the X-factor computation of the golf swing. Based on optoelectronic measurements. Variability of the choice of upper limb, plane of projection and instant of computation.
-
Article dans une revue avec comité de lectureBOURGAIN, Maxime; HYBOIS, Samuel; THOREUX, Patricia; ROUILLON, Olivier; SAURET, Christophe; ROUCH, Philippe (Elsevier, 2018)The golf swing is a complex full body movement during which the spine and shoulders are highly involved. In order to determine shoulder kinematics during this movement, multibody kinematics optimization (MKO) can be ...
-
Communication avec acteBOURGAIN, Maxime; SAURET, Christophe; PRUM, Grégoire; VALDES-TAMAYO, Laura; ROUILLON, Olivier; THOREUX, Patricia; ROUCH, Philippe (MPDI, 2020)The swing is a key movement for golf. Its in-field performance could be estimated by embedded technologies, but often only vertical ground reaction forces (VGRF) are estimated. However, as the swing plane is inclined, ...