• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
  • Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A numerical model suggests the interplay between nuclear plasticity and stiffness during a perfusion assay

Article dans une revue avec comité de lecture
Author
DEVERAUX, Solenne
1332 Laboratoire de mécanique des sols, structures et matériaux [MSSMat]
ALLENA, Rachele
466360 Institut de Biomecanique Humaine Georges Charpak
AUBRY, Denis
1332 Laboratoire de mécanique des sols, structures et matériaux [MSSMat]

URI
http://hdl.handle.net/10985/17467
DOI
10.1016/j.jtbi.2017.09.007
Date
2017
Journal
Journal of Theoretical Biology

Abstract

Cell deformability is a necessary condition for a cell to be able to migrate, an ability that is vital both for healthy and diseased organisms. The nucleus being the largest and stiffest organelle, it often is a barrier to cell migration. It is thus essential to characterize its mechanical behaviour. First, we numerically investigate the visco-elasto-plastic properties of the isolated nucleus during a compression test. This simulation highlights the impact of the mechanical behaviour of the nuclear lamina and the nucleoplasm on the overall plasticity. Second, a whole cell model is developed to simulate a perfusion experiment to study the possible interactions between the cytoplasm and the nucleus. We analyze and discuss the role of the lamina for a wild-type cell model, and a lamin-deficient one, in which the Young’s modulus of the lamina is set to 1% of its nominal value. This simulation suggests an interplay between the cytoplasm and the nucleoplasm, especially in the lamin-deficient cell, showing the need of a stiffer nucleoplasm to maintain nuclear plasticity.

Files in this item

Name:
IBHGC_JTB_2017_ALLENA.pdf
Size:
3.037Mb
Format:
PDF
View/Open

Collections

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Related items

Showing items related by title, author, creator and subject.

  • High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells 
    Article dans une revue avec comité de lecture
    DAVIDSON, Patricia M; FEDORCHAK, Gregory R; MONDESERT-DEVERAUX, Solenne; BELL, Emily S; ISERMANN, Philipp; AUBRY, Denis; ALLENA, Rachele; LAMMERDING, Jan (Royal Society of Chemistry, 2019)
    The mechanical properties of the cell nucleus are increasingly recognized as critical in many biological processes. The deformability of the nucleus determines the ability of immune and cancer cells to migrate through ...
  • In silico approach to quantify nucleus self‑deformation on micropillared substrates 
    Article dans une revue avec comité de lecture
    MONDESERT-DEVERAUX, Solenne; ALLENA, Rachele; AUBRY, Denis (Springer Verlag, 2019)
    Considering the major role of confined cell migration in biological processes and diseases, such as embryogenesis or metastatic cancer, it has become increasingly important to design relevant experimental set-ups for in ...
  • A Coupled Friction-Poroelasticity Model of Chimneying Shows that Confined Cells Can Mechanically Migrate Without Adhesions 
    Article dans une revue avec comité de lecture
    MONDESERT-DEVERAUX, Solenne; ALLENA, Rachele; AUBRY, Denis (Tech Science Press, 2018)
    Cell migration is the cornerstone of many biological phenomena such as cancer metastasis, immune response or organogenesis. Adhesion-based motility is the most renown and examined motility mode, but in an adhesion-free ...
  • Viscoelastoplastic model of cell nucleus under compression 
    Communication avec acte
    DEVERAUX, Solenne; ALLENA, Rachele; AUBRY, Denis (Informa UK Limited, 2015)
    Short abstract
  • High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells 
    Article dans une revue avec comité de lecture
    FEDORCHAK, Gregory; MONDÉSERT-DEVERAUX, Solenne; BELL, Emily; ISERMANN, Philipp; AUBRY, Denis; ALLENA, Rachele; LAMMERDING, Jan (Royal Society of Chemistry, 2019)
    The mechanical properties of the cell nucleus are increasingly recognized as critical in many biological processes. The deformability of the nucleus determines the ability of immune and cancer cells to migrate through ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales