• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • View Item
  • Home
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cutting Modeling of Hybrid CFRP/Ti Composite with Induced Damage Analysis

Article dans une revue avec comité de lecture
Author
XU, Jinyang
ccEL MANSORI, Mohamed
211915 Mechanics surfaces and materials processing [MSMP]

URI
http://hdl.handle.net/10985/17643
DOI
10.3390/ma9010022
Date
2016
Journal
Materials

Abstract

In hybrid carbon fiber reinforced polymer (CFRP)/Ti machining, the bi-material interface is the weakest region vulnerable to severe damage formation when the tool cutting from one phase to another phase and vice versa. The interface delamination as well as the composite-phase damage is the most serious failure dominating the bi-material machining. In this paper, an original finite element (FE) model was developed to inspect the key mechanisms governing the induced damage formation when cutting this multi-phase material. The hybrid composite model was constructed by establishing three disparate physical constituents, i.e., the Ti phase, the interface, and the CFRP phase. Different constitutive laws and damage criteria were implemented to build up the entire cutting behavior of the bi-material system. The developed orthogonal cutting (OC) model aims to characterize the dynamic mechanisms of interface delamination formation and the affected interface zone (AIZ). Special focus was made on the quantitative analyses of the parametric effects on the interface delamination and composite-phase damage. The numerical results highlighted the pivotal role of AIZ in affecting the formation of interface delamination, and the significant impacts of feed rate and cutting speed on delamination extent and fiber/matrix failure.

Files in this item

Name:
MSMP_MAT_2016_ELMANSORI.pdf
Size:
7.681Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)

Related items

Showing items related by title, author, creator and subject.

  • Orthogonal cutting mechanisms of CFRP/Ti6Al4V stacks 
    Article dans une revue avec comité de lecture
    XU, Jinyang; CHEN, Ming; REN, Fei; ccEL MANSORI, Mohamed (Springer Verlag, 2019)
    The enhanced mechanical/physical properties and improved functionalities have made the carbon fiber–reinforced polymer/titanium alloy (CFRP/Ti6Al4V) stacks very attractive to the modern aerospace industry. However, the ...
  • An investigation of drilling high-strength CFRP composites using specialized drills 
    Article dans une revue avec comité de lecture
    XU, Jinyang; LI, Chao; CHEN, Ming; REN, Fei; ccEL MANSORI, Mohamed (Springer Verlag, 2019)
    Machining of high-strength carbon fiber reinforced polymers (CFRPs) has faced great challenges in quality control and tool wear management due to their inherent heterogeneity and high abrasiveness leading to serious workpiece ...
  • A Study on Drilling High-Strength CFRP Laminates: Frictional Heat and Cutting Temperature 
    Article dans une revue avec comité de lecture
    XU, Jinyang; LI, Chao; DANG, Jiaqiang; REN, Fei; ccEL MANSORI, Mohamed (MDPI, 2018)
    High-strength carbon fiber reinforced polymer (CFRP) composites have become popular materials to be utilized in the aerospace and automotive industries, due to their unique and superior mechanical properties. An understanding ...
  • Wear characteristics of polycrystalline diamond tools in orthogonal cutting of CFRP/Ti stacks 
    Article dans une revue avec comité de lecture
    XU, Jinyang; ccEL MANSORI, Mohamed (Elsevier, 2017)
    CFRP/Ti stacks have become a viable alternative to conventional composite laminates and metal alloys in various aerospace applications because of their enhanced mechanical properties and improved structural functions. ...
  • Experimental study on drilling mechanisms and strategies of hybrid CFRP/Ti stacks 
    Article dans une revue avec comité de lecture
    XU, Jinyang; ccEL MANSORI, Mohamed (Elsevier, 2016)
    Mechanical drilling has been frequently used for hole making of hybrid CFRP/Ti stacks in order to ensure excellent fastening assembly. Owing to their inhomogeneous behavior and poor machinability, drilling CFRP/Ti stacks ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales