Cutting Modeling of Hybrid CFRP/Ti Composite with Induced Damage Analysis
Article dans une revue avec comité de lecture
Abstract
In hybrid carbon fiber reinforced polymer (CFRP)/Ti machining, the bi-material interface is the weakest region vulnerable to severe damage formation when the tool cutting from one phase to another phase and vice versa. The interface delamination as well as the composite-phase damage is the most serious failure dominating the bi-material machining. In this paper, an original finite element (FE) model was developed to inspect the key mechanisms governing the induced damage formation when cutting this multi-phase material. The hybrid composite model was constructed by establishing three disparate physical constituents, i.e., the Ti phase, the interface, and the CFRP phase. Different constitutive laws and damage criteria were implemented to build up the entire cutting behavior of the bi-material system. The developed orthogonal cutting (OC) model aims to characterize the dynamic mechanisms of interface delamination formation and the affected interface zone (AIZ). Special focus was made on the quantitative analyses of the parametric effects on the interface delamination and composite-phase damage. The numerical results highlighted the pivotal role of AIZ in affecting the formation of interface delamination, and the significant impacts of feed rate and cutting speed on delamination extent and fiber/matrix failure.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureThe enhanced mechanical/physical properties and improved functionalities have made the carbon fiber–reinforced polymer/titanium alloy (CFRP/Ti6Al4V) stacks very attractive to the modern aerospace industry. However, the ...
-
Article dans une revue avec comité de lectureMachining of high-strength carbon fiber reinforced polymers (CFRPs) has faced great challenges in quality control and tool wear management due to their inherent heterogeneity and high abrasiveness leading to serious workpiece ...
-
Article dans une revue avec comité de lectureHigh-strength carbon fiber reinforced polymer (CFRP) composites have become popular materials to be utilized in the aerospace and automotive industries, due to their unique and superior mechanical properties. An understanding ...
-
Article dans une revue avec comité de lectureCFRP/Ti stacks have become a viable alternative to conventional composite laminates and metal alloys in various aerospace applications because of their enhanced mechanical properties and improved structural functions. ...
-
Article dans une revue avec comité de lectureMechanical drilling has been frequently used for hole making of hybrid CFRP/Ti stacks in order to ensure excellent fastening assembly. Owing to their inhomogeneous behavior and poor machinability, drilling CFRP/Ti stacks ...