Numerical studies of frictional responses when cutting hybrid CFRP/Ti composite
Article dans une revue avec comité de lecture
Date
2016Journal
International Journal of Advanced Manufacturing TechnologyAbstract
In manufacturing sectors, machining hybrid CFRP/Ti is usually an extremely challenging task due to the disparate natures of each stacked constituent involved and their respectively poor machinability. The current research focus of hybrid CFRP/Ti cutting was primarily made via the experimental studies, which exhibited high cost and time consuming. In this paper, a new contribution was provided to study the key frictional responses dominating the bi-material machining via the numerical approach. To this aim, a multi-physical model was developed by implementing different constitutive laws and damage criteria to construct the anisotropic machinability of the stacked composite. The interrelated effects of the multi-toolwork frictional behavior on hybrid CFRP/Ti cutting were precisely investigated with respect to the specific cutting energy consumption, machined surface morphology, and affected subsurface damage. A special focus was made to clarify the cutting sequence’s influences on the hybrid cutting operation. The numerical results highlighted the reasonable CFRP→Ti cutting sequence for hybrid composite machining and the pivotal role of multi-tool-work interaction in affecting the frictional responses induced by cutting.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureThe enhanced mechanical/physical properties and improved functionalities have made the carbon fiber–reinforced polymer/titanium alloy (CFRP/Ti6Al4V) stacks very attractive to the modern aerospace industry. However, the ...
-
Article dans une revue avec comité de lectureMachining of high-strength carbon fiber reinforced polymers (CFRPs) has faced great challenges in quality control and tool wear management due to their inherent heterogeneity and high abrasiveness leading to serious workpiece ...
-
Article dans une revue avec comité de lectureIn hybrid carbon fiber reinforced polymer (CFRP)/Ti machining, the bi-material interface is the weakest region vulnerable to severe damage formation when the tool cutting from one phase to another phase and vice versa. The ...
-
Article dans une revue avec comité de lectureLI, Chao; XU, Jinyang; CHEN, Ming; AN, Qinglong; EL MANSORI, Mohamed; REN, Fei (Elsevier BV, 2019-04)Drilling CFRP/Ti6Al4V stacks in one-shot time becomes essential in the modern aerospace manufacturing sectors in order to guarantee the productivity due to the demands of riveting and fastening assembly. In the present ...
-
Article dans une revue avec comité de lectureHigh-strength carbon fiber reinforced polymer (CFRP) composites have become popular materials to be utilized in the aerospace and automotive industries, due to their unique and superior mechanical properties. An understanding ...