• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Closed-loop control of a free shear flow: a framework using the parabolized stability equations

Article dans une revue avec comité de lecture
Author
SASAKI, Kenzo
471029 Instituto Tecnológico de Aeronáutica = Aeronautics Institute of Technology [Brésil] [ITA]
TISSOT, Gilles
75 Institut de Recherche Mathématique de Rennes [IRMAR]
961 Laboratoire d'Acoustique de l'Université du Mans [LAUM]
486012 Fluid Flow Analysis, Description and Control from Image Sequences [FLUMINANCE]
CAVALIERI, André V. G.
471029 Instituto Tecnológico de Aeronáutica = Aeronautics Institute of Technology [Brésil] [ITA]
560912 Acoustique, Aérodynamique, Turbulence [Institut Pprime] [2AT]
SILVESTRE, Flávio J.
471029 Instituto Tecnológico de Aeronáutica = Aeronautics Institute of Technology [Brésil] [ITA]
JORDAN, Peter
300463 École Nationale Supérieure de Mécanique et d’Aérotechnique [Poitiers] [ISAE-ENSMA]
560912 Acoustique, Aérodynamique, Turbulence [Institut Pprime] [2AT]
131861 University of Groningen [Groningen]
ccBIAU, Damien
134975 Laboratoire de Dynamique des Fluides [DynFluid]
118112 Institut Pprime [UPR 3346] [PPrime [Poitiers]]

URI
http://hdl.handle.net/10985/17783
DOI
10.1007/s00162-018-0477-x
Date
2018
Journal
Theoretical and Computational Fluid Dynamics

Abstract

In this study the parabolized stability equations (PSE) are used to build reduced-order-models (ROMs) given in terms of frequency and time-domain transfer functions (TFs) for application in closed-loop control. The control law is defined in two steps; first it is necessary to estimate the open-loop behaviour of the system from measurements, and subsequently the response of the flow to an actuation signal is determined. The theoretically derived PSE TFs are used to account for both of these effects. Besides its capability to derive simplified models of the flow dynamics, we explore the use of the TFs to provide an a priori determination of adequate positions for efficiently forcing along the direction transverse to the mean flow. The PSE TFs are also used to account for the relative position between sensors and actuators which defines two schemes, feedback and feedforward, the former presenting a lower effectiveness. Differences are understood in terms of the evaluation of the causality of the resulting gain, which is made without the need to perform computationally demanding simulations for each configuration. The ROMs are applied to a direct numerical simulation of a convectively unstable 2D mixing layer. The derived feedforward control law is shown to lead to a reduction in the mean square values of the objective fluctuation of more than one order of magnitude, at the output position, in the nonlinear simulation, which is accompanied by a significant delay in the vortex pairing and roll-up. A study of the robustness of the control law demonstrates that it is fairly insensitive to the amplitude of inflow perturbations and model uncertainties given in terms of Reynolds number variations.

Files in this item

Name:
DYNFLUID_TCFD_2018_SASAKI.pdf
Size:
2.817Mb
Format:
PDF
Description:
Article
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • Closed-loop control of wavepackets in a free shear-flow 
    Communication avec acte
    SASAKI, Kenzo; TISSOT, Gilles; CAVALIERI, André V. G.; SILVESTRE, Flávio J.; JORDAN, Peter; ccBIAU, Damien (American Institute of Aeronautics and Astronautics, 2016)
    This study aims at the attenuation of the unsteady fluctuations along a two-dimensional mixing layer which may be considered as a prototypical problem for the evaluation of es- timation and control techniques, and also a ...
  • A framework for closed-loop flow control using the parabolized stability equations 
    Communication avec acte
    SASAKI, Kenzo; CAVALIERI, André V. G.; SILVESTRE, Flávio J.; JORDAN, Peter; TISSOT, Gilles; ccBIAU, Damien (American Institute of Aeronautics and Astronautics, 2017)
    We develop a reduced-order-model framework using the parabolized stability equations and identification techniques for the closed-loop control of unsteady fluctuations along fluidic systems. These models had been successfully ...
  • Restricted nonlinear model for high- and low-drag events in plane channel flow 
    Article dans une revue avec comité de lecture
    ALIZARD, Frédéric; ccBIAU, Damien (Cambridge University Press (CUP), 2019)
    A restricted nonlinear (RNL) model, obtained by partitioning the state variables into streamwise-averaged quantities and superimposed perturbations, is used in order to track the exact coherent state in plane channel flow ...
  • Flow in a weakly curved square duct: Assessment and extension of Dean's model 
    Article dans une revue avec comité de lecture
    ccRIGO, Leonardo; ccBIAU, Damien; ccGLOERFELT, Xavier (American Physical Society (APS), 2021-02)
    The simplified model by W. R. Dean, based on a low-curvature assumption, provided an early understanding of the laminar flow in curved ducts. However, most of the following studies relied on computer simulations of the ...
  • Self-similar temporal turbulent boundary layer flow 
    Article dans une revue avec comité de lecture
    ccBIAU, Damien (Elsevier BV, 2023-01)
    Direct numerical simulations of temporally evolving boundary layer flows are considered with solutions restricted to self-similar profiles. A new set of modified Navier–Stokes equations is solved with periodic boundary ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales