The first-digit frequencies in data of turbulent flows
Date
2015Journal
Physica A: Statistical Mechanics and its ApplicationsAbstract
Considering the first significant digits (noted image) in data sets of dissipation for turbulent flows, the probability to find a given number (image or 2 or …9) would be 1/9 for a uniform distribution. Instead the probability closely follows Newcomb–Benford’s law, namely image. The discrepancies between Newcomb–Benford’s law and first-digits frequencies in turbulent data are analysed through Shannon’s entropy. The data sets are obtained with direct numerical simulations for two types of fluid flow: an isotropic case initialized with a Taylor–Green vortex and a channel flow. Results are in agreement with Newcomb–Benford’s law in nearly homogeneous cases and the discrepancies are related to intermittent events. Thus the scale invariance for the first significant digits, which supports Newcomb–Benford’s law, seems to be related to an equilibrium turbulent state, namely with a significant inertial range. A matlab/octave program provided in appendix is such that part of the presented results can easily be replicated.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureA restricted nonlinear (RNL) model, obtained by partitioning the state variables into streamwise-averaged quantities and superimposed perturbations, is used in order to track the exact coherent state in plane channel flow ...
-
Article dans une revue avec comité de lectureOscillatory Stokes flows, with zero mean, are subjected to subcritical transition to turbulence. The maximal energy growth of perturbations is computed in the subcritical regime through an optimisation method. The results ...
-
Article dans une revue avec comité de lectureSASAKI, Kenzo; TISSOT, Gilles; CAVALIERI, André V. G.; SILVESTRE, Flávio J.; JORDAN, Peter; BIAU, Damien (Springer Verlag, 2018)In this study the parabolized stability equations (PSE) are used to build reduced-order-models (ROMs) given in terms of frequency and time-domain transfer functions (TFs) for application in closed-loop control. The control ...
-
Communication avec acteSASAKI, Kenzo; CAVALIERI, André V. G.; SILVESTRE, Flávio J.; JORDAN, Peter; TISSOT, Gilles; BIAU, Damien (American Institute of Aeronautics and Astronautics, 2017)We develop a reduced-order-model framework using the parabolized stability equations and identification techniques for the closed-loop control of unsteady fluctuations along fluidic systems. These models had been successfully ...
-
Communication avec acteSASAKI, Kenzo; TISSOT, Gilles; CAVALIERI, André V. G.; SILVESTRE, Flávio J.; JORDAN, Peter; BIAU, Damien (American Institute of Aeronautics and Astronautics, 2016)This study aims at the attenuation of the unsteady fluctuations along a two-dimensional mixing layer which may be considered as a prototypical problem for the evaluation of es- timation and control techniques, and also a ...