• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A New Hemodynamic Ex Vivo Model for Medical Devices Assessment

Article dans une revue avec comité de lecture
Author
MAUREL, Blandine
106179 Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
134975 Laboratoire de Dynamique des Fluides [DynFluid]
523373 Sarcomes osseux et remodelage des tissus calcifiés - Phy-Os [Nantes - INSERM U1238] [Phy-Os]
SARRAF, Christophe
134975 Laboratoire de Dynamique des Fluides [DynFluid]
BAKIR, Farid
134975 Laboratoire de Dynamique des Fluides [DynFluid]
CHAI, Feng
106179 Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
374570 Université de Lille
MATON, Mickael
106179 Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
374570 Université de Lille
SOBOCINSKI, Jonathan
106179 Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
HERTAULT, Adrien
374570 Université de Lille
BLANCHEMAIN, Nicolas
106179 Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
374570 Université de Lille
HAULON, Stephan
425779 Centre Hospitalier Régional Universitaire [Lille] [CHRU Lille]
106179 Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
LERMUSIAUX, Patrick
24122 Laboratoire de Génie Electrique et Ferroélectricité [LGEF]
134975 Laboratoire de Dynamique des Fluides [DynFluid]
194495 Université Claude Bernard Lyon 1 [UCBL]
300074 Hospices Civils de Lyon [HCL]
301764 Hôpital Louis Pradel [CHU - HCL]
300094 Hôpital Edouard Herriot [CHU - HCL]

URI
http://hdl.handle.net/10985/17815
DOI
10.1016/j.avsg.2015.06.066
Date
2015
Journal
Annals of Vascular Surgery

Abstract

Introduction: In stent restenosis (ISR) remains a major public health concern with an increased morbidity, mortality and health-related costs. Drug-eluting stents (DES) have reduced ISR, but are associated with healing-related issues or hypersensitivity reactions, leading to an increased risk of late acute stent thrombosis. Evaluations of new DES are based on animal models or in vitro release systems which show several limitations. The role of flow and shear stress on endothelial cell and ISR has also been emphasized. The aim of this work was to design and first evaluate an original bioreactor, reproducing ex vivo hemodynamic and biological conditions similar to human conditions, to further evaluate new DES. Methods & Results: This bioreactor was designed to study up to 6 stented arteries connected in bypass, immersed in a culture box, in which circulated a physiological systolo-diastolic resistive flow. Two centrifugal pumps drove the flow. The principal pump generated pulsating flows by modulation of rotation velocity, and the second pump worked at constant rotation velocity, ensuring the counter pressure levels and backflows. The flow rate, the velocity profile, the arterial pressure and the resistance of the flow were adjustable. The bioreactor was placed in an incubator to reproduce a biological environment. A first experience of feasibility was realized over a period of 24 days. Three rat aortic thoracic arteries were placed into the bioreactor, immersed in cell culture medium change every 3 days, and with a circulating systole diastolic flux circulating among the entire experimentation. There was no infection, no leak. At the end of experimentation, a morphometric analysis was performed confirming the viability of the arteries. Conclusion: We design and patent an original hemodynamic ex vivo model to further study new DES and ISR. We will next validate this ex vivo model of ISR reproducing this experimentation with stented arteries. Once validated, this bioreactor will allow characterization of the velocity field and drug transfers within a stented artery with new functionalized DES, with experimental means not available in vivo. Another main point will be the reduction of animal experimentation, and the availability of first results of new DES in human tissues (human infra popliteal or coronary arteries collected during human donation).

Files in this item

Name:
DYNFLUID_AVS_2015_SARRAF.pdf
Size:
501.1Kb
Format:
PDF
Description:
Article
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • Banc de test pour stent 
    Brevet
    BAKIR, Farid; MAUREL, Blandine; LERMUSIAUX, Patrick; SARRAF, Christophe (2013)
    L'invention concerne un banc test pour stents, caractérisé en ce qu'il comprend une pompe (2) non volumétrique dont l'entrée est raccordée à un réservoir (4) de liquide sanguin ouvert et dont la sortie est reliée à une ...
  • Comparison of various hemodynamic models for applications to cfd in stented arteries 
    Article dans une revue avec comité de lecture
    CHABI, Fatiha; CHAMPMARTIN, Stéphane; SARRAF, Christophe; NOGUERA, Ricardo; MAUREL, Blandine (icmmb19.org, 2014)
    A design study of propeller hydrokinetic turbines is explored in the present paper, where the optimized blade geometry is determined by the classical Glauert theory applicable to the design of axial flow turbines (hydrokinetic ...
  • Comparison of various hemodynamic models for applications to CFD in stent arteries 
    Communication avec acte
    CHABI, Fatiha; CHAMPMARTIN, Stéphane; SARRAF, Christophe; NOGUERA, Ricardo; MAUREL, Blandine (2014)
    This work assesses three hemodynamic models for the numerical modeling of intra-stent flows. These are the classical Poiseuille model (PM), the simplified pulsatile model (SPM) and the complete pulsatile model (CPM) based ...
  • Experimental study of blade rigidity effects on the global and the local performances of a thick blades axial-flow fan 
    Communication avec acte
    NOURI, Hussain; RAVELET, Florent; SARRAF, Christophe; BAKIR, Farid (ASME, 2010)
    An experimental investigation on the aerodynamic performances of thick blades axial-flow fans was carried out in this study. Two fans are considered, the first one is rotomoulded (in plastic) and the second one is milled ...
  • Development of Attached Cavitation at Very Low Reynolds Numbers from Partial to Super-Cavitation 
    Article dans une revue avec comité de lecture
    RAVELET, Florent; DANLOS, Amélie; BAKIR, Farid; CROCI, Kilian; KHELLADI, Sofiane; SARRAF, Christophe (MDPI AG, 2020)
    The present study focuses on the inception, the growth, and the potential unsteady dynamics of attached vapor cavities into laminar separation bubbles. A viscous silicon oil has been used in a Venturi geometry to explore ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales