Intermittency and transition to chaos in the cubical lid-driven cavity flow
Article dans une revue avec comité de lecture
Date
2016Journal
Fluid Dynamics ResearchAbstract
Transition from steady state to intermittent chaos in the cubical lid-driven flow is investigated numerically. Fully three-dimensional stability analyses have revealed that the flow experiences an Andronov-Poincaré-Hopf bifurcation at a critical Reynolds number Rec = 1914. As for the 2D-periodic lid-driven cavity flows, the unstable mode originates from a centrifugal instability of the primary vortex core. A Reynolds-Orr analysis reveals that the unstable perturbation relies on a combination of the lift-up and anti lift-up mechanisms to extract its energy from the base flow. Once linearly unstable, direct numerical simulations show that the flow is driven toward a primary limit cycle before eventually exhibiting intermittent chaotic dynamics. Though only one eigenpair of the linearized Navier-Stokes operator is unstable, the dynamics during the intermittencies are surprisingly well characterized by one of the stable eigenpairs.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureLOISEAU, Jean-Christophe; ROBINET, Jean-Christophe; CHERUBINI, Stefania; LERICHE, Emmanuel (Elsevier, 2015)The linear global instability and resulting transition to turbulence induced by a cylindrical roughness element of heighth and diameter d=3h immersed within an incompressible boundary layer flow along a flat plate is ...
-
Ouvrage scientifiqueLOISEAU, Jean-Christophe; CHERUBINI, Stefania; ROBINET, Jean-Christophe; LERICHE, Emmanuel (Springer, 2015)lobal instability analysis of the three-dimensional flow past two rough- ness elements of different shape, namely a cylinder and a bump, is presented. In both cases, the eigenspectrum is made of modes characterised by a ...
-
Article dans une revue avec comité de lectureLOISEAU, Jean-Christophe; ROBINET, Jean-Christophe; CHERUBINI, Stefania; LERICHE, Emmanuel (Cambridge University Press (CUP), 2014)The linear global instability and resulting transition to turbulence induced by an isolated cylindrical roughness element of height h and diameter d immersed within an incompressible boundary layer flow along a flat plate ...
-
Article dans une revue avec comité de lectureBENGANA, Y.; LOISEAU, Jean-Christophe; ROBINET, Jean-Christophe; TUCKERMAN, L. S. (Cambridge University Press (CUP), 2019)A comprehensive study of the two-dimensional incompressible shear-driven flow in an open square cavity is carried out. Two successive bifurcations lead to two limit cycles with different frequencies and different numbers ...
-
Article dans une revue avec comité de lectureDUCOIN, A.; LOISEAU, Jean-Christophe; ROBINET, Jean-Christophe (Elsevier, 2016)The objective of this work is to investigate numerically the different physical mechanisms of the transition to turbulence of a separated boundary-layer flow over an airfoil at low angle of attack. In this study, the ...