Global stability analysis of lifted diffusion flames
Article dans une revue avec comité de lecture
Date
2017Journal
Energy ProcediaAbstract
This work describes the development of a method for the global hydrodynamic stability analysis of diffusion flames. The low-Machnumber (LMN) Navier–Stokes (NS) equations for reacting flows are solved together with a transport equation for the mixture fraction describing the local composition of the fluid. The equations are solved by the spectral-element code NEK5000 with Legendre polynomial reconstruction of degree twelve and second-order accurate Runge-Kutta time integration scheme. In order to compute the base flow for the stability analysis, a selective frequency damping approach has been employed. The global stability analysis has been performed by a matrix-free time-stepper algorithm applied to the LMN-NS equations, using an Arnoldi method to compute the most unstable modes. Moreover, a numerical linearization of the governing equation is employed, which allows one to study the stability of diffusion flames without the direct evaluation and storage of the linearized operator. Therefore, a remarkable reduction of the storage capacity is achieved and a more flexible numerical approach is obtained. The numerical model has been validated by comparison with the results for the axisymmetric diffusion flame available in the literature.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureFARANO, Mirko; MANCINI, C.; DE PALMA, Pietro; CHERUBINI, Stefania; ROBINET, Jean-Christophe (IOP Publishing, 2018)This work investigates the three-dimensional global hydrodynamic stability of a diffusion flame. The low-Mach-number (LMN) Navier-Stokes (NS) equations for reacting flows are solved together with a transport equation for ...
-
Article dans une revue avec comité de lectureFARANO, Mirko; CHERUBINI, Stefania; DE PALMA, Pietro; ROBINET, Jean-Christophe (Cambridge University Press (CUP), 2015)In this work it is shown that hairpin vortex structures can be the outcome of a nonlinear optimal growth process, in a similar way as streaky structures can be the result of a linear optimal growth mechanism. With this ...
-
Article dans une revue avec comité de lectureFARANO, Mirko; CHERUBINI, Stefania; DE PALMA, Pietro; ROBINET, Jean-Christophe (Springer Verlag, 2017)Bursts are recurrent, transient, highly energetic events characterized by localized variations of velocity and vorticity in turbulent wall-bounded flows. In this work, a nonlinear energy optimization strategy is employed ...
-
Article dans une revue avec comité de lectureFARANO, Mirko; CHERUBINI, Stefania; DE PALMA, Pietro; ROBINET, Jean-Christophe (IOP Publishing, 2016)Subcritical transition in plane Poiseuilleflow is investigated by means of aLagrange-multiplier direct-adjoint optimization procedure with the aim offinding localized three-dimensional perturbations optimally growing in a ...
-
Article dans une revue avec comité de lectureFARANO, Mirko; CHERUBINI, Stefania; DE PALMA, Pietro; SCHNEIDER, T. M.; ROBINET, Jean-Christophe (Cambridge University Press (CUP), 2018)Transitional turbulence in shear flows is supported by a network of unstable exact invariant solutions of the Navier–Stokes equations. The network is interconnected by heteroclinic connections along which the turbulent ...