A New Fast Track to Nonlinear Modal Analysis of Power System Using Normal Form
Article dans une revue avec comité de lecture
Auteur
Date
2020Journal
IEEE Transactions on Power SystemsRésumé
The inclusion of higher-order terms in small-signal (modal) analysis augments the information provided by linear analysis and enables better dynamic characteristic studies on the power system. This can be done by applying Normal Form theory to simplify the higher order terms. However, it requires the preliminary expansion of the nonlinear system on the normal mode basis, which is impracticable with standard methods when considering large scale systems. In this paper, we present an efficient numerical method for accelerating those computations, by avoiding the usual Taylor expansion. Our computations are based on prescribing the linear eigenvectors as unknown field in the initial nonlinear system, which leads to solving linear-only equations to obtain the coefficients of the nonlinear modal model. In this way, actual Taylor expansion and associated higher order Hessian matrices are avoided, making the computation of the nonlinear model up to third order and nonlinear modal analysis fast and achievable in a convenient computational time. The proposed method is demonstrated on a single-machine-infinite-bus (SMIB) system and applied to IEEE 3-Machine, IEEE 16- Machine and IEEE 50-Machine systems.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication avec acteToday's power systems are strongly nonlinear and are becoming more complex with the large penetration of power-electronics interfaced generators. Conventional Linear Modal Analysis does not adequately study such a system ...
-
Article dans une revue avec comité de lectureIncreasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a ...
-
Article dans une revue avec comité de lectureUGWUANYI, Nnaemeka Sunday; KESTELYN, Xavier; THOMAS, Olivier; MARINESCU, Bogdan; WANG, Bin (Elsevier BV, 2022-07)This paper proposes a new system-level application for monitoring out-of-step (OOS) events in power systems. As already known, amplitude-dependent frequency shift is a nonlinear phenomenon of electromechanical oscillations ...
-
Article dans une revue avec comité de lectureUGWUANYI, Nnaemeka S.; CLENET, Stephane; KESTELYN, Xavier; THOMAS, Olivier (Institute of Electrical and Electronics Engineers (IEEE), 2022-03)Closed-form formulations are difficult to find when the material behavior law is nonlinear. A linear approximation, on the other hand, has a very narrow range of validity. In this communication, the Normal Form (NF) method ...
-
Article dans une revue avec comité de lectureTIAN, Tian; THOMAS, Olivier; AMANO, Hiroyuki; MESSINA, Arturo Roman; KESTELYN, Xavier (Institute of Electrical and Electronics Engineers, 2018)The inclusion of higher-order terms in small-signal (modal) analysis has been an intensive research topic in nonlinear power system analysis. Inclusion of second-order terms with the method of normal forms (MNF) has been ...