• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
  • Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Contribution to FE modeling for intraoperative pedicle screw strength prediction

Article dans une revue avec comité de lecture
Author
VAN DEN ABBEELE, Maxim
VALIADIS, Jean-Marc
LIMA, Lucas Venancio
KHALIFE, Pascal
ccSKALLI, Wafa
ccROUCH, Philippe
466360 Institut de Biomecanique Humaine Georges Charpak

URI
http://hdl.handle.net/10985/17988
DOI
10.1080/10255842.2017.1414200
Date
2017
Journal
Computer Methods in Biomechanics and Biomedical Engineering

Abstract

Although the use of pedicle screws is considered safe, mechanical issues still often occur. Commonly reported issues are screw loosening, screw bending and screw fracture. The aim of this study was to develop a Finite Element (FE) model for the study of pedicle screw biomechanics and for the prediction of the intraoperative pullout strength. The model includes both a parameterized screw model and a patient-specific vertebra model. Pullout experiments were performed on 30 human cadaveric vertebrae from ten donors. The experimental force-displacement data served to evaluate the FE model performance. μCT images were taken before and after screw insertion, allowing the creation of an accurate 3D-model and a precise representation of the mechanical properties of the bone. The experimental results revealed a significant positive correlation between bone mineral density (BMD) and pullout strength (Spearman ρ= 0.59, p< 0.001) as well as between BMD and pullout stiffness (Spearman ρ= 0.59, p< 0.001). A high positive correlation was also found between the pullout strength and stiffness (Spearman ρ = 0.84, p < 0.0001). The FE model was able to reproduce the linear part of the experimental force-displacement curve. Moreover, a high positive correlation was found between numerical and experimental pullout stiffness (Pearson ρ = 0.96, p< 0.005) and strength (Pearson ρ= 0.90, p< 0.05). Once fully validated, this model opens the way for a detailed study of pedicle screw biomechanics and for future adjustments of the screw design.

Files in this item

Name:
IBHGC_CMBBE_2017_VAN_DEN_ABBEE ...
Size:
1.755Mb
Format:
PDF
Description:
Article
View/Open

Collections

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Related items

Showing items related by title, author, creator and subject.

  • Spine 
    Chapitre d'ouvrage scientifique
    VAN DEN ABBEELE, Maxim; ADAM, Clayton; ccSKALLI, Wafa; ccLAPORTE, Sébastien; ccROUCH, Philippe; ccROHAN, Pierre-Yves (Elsevier, 2017)
    Clinical problems of the human spine have a high prevalence, affecting more than 25.5 million people in 2012. Older adults, in particular, are susceptible to degenerative spine disorders such as deformities or osteoporosis. ...
  • A subject-specific biomechanical control model for the prediction of cervical spine muscle forces 
    Article dans une revue avec comité de lecture
    VAN DEN ABBEELE, Maxim; LI, Fan; POMERO, Vincent; BONNEAU, Dominique; ccSANDOZ, Baptiste; ccSKALLI, Wafa; ccLAPORTE, Sébastien (Elsevier, 2018)
    Background: The aim of the present study is to propose a subject-specific biomechanical control model for the estimation of active cervical spine muscle forces. Methods: The proprioception-based regulation model developed ...
  • Limiting interpedicular screw displacement increases shear forces in screws: A finite element study 
    Article dans une revue avec comité de lecture
    LIMA, Lucas Venancio; CHARLES, Yann-Philippe; ccSKALLI, Wafa; ccROUCH, Philippe (Elsevier Masson, 2017)
    Background context: Screw loosening has been reported for non-fusion devices. Forces on pedicle screwscould be related to kinematic parameters as the interpedicular displacement (ID), which consists of thedisplacement ...
  • A New Method To Determine Volumetric Bone Mineral Density From Bi-Planar Dual Energy Radiographs Using A Finite Element Model: An Ex-Vivo Study 
    Article dans une revue avec comité de lecture
    CHOISNE, Julie; TRAVERT, Christophe; VALIADIS, Jean-Marc; FOLLET, Hélène; ccSKALLI, Wafa (World Scientific Pub Co Pte Lt, 2017)
    Finite element models (FEMs) derived from QCT-scans were developed to evaluate vertebral strength but QCT scanners limitations are restrictive for routine osteoporotic diagnosis. A new approach considers using bi-planar ...
  • Vertebral strength prediction under anterior compressive force using a finite element model for osteoporosis assessment 
    Article dans une revue avec comité de lecture
    CHOISNE, Julie; VALIADIS, Jean-Marc; TRAVERT, Christophe; KOLTA, Sami; ROUX, Christian; ccSKALLI, Wafa (Taylor & Francis, 2015)
    Vertebral fractures are one of the most common clinical manifestations with the major adverse consequences of osteoporosis as they usually occur under non-traumatic loading conditions. Height loss, back pain and func-tional ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales