• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
  • Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accuracy and reliability of automatic three-dimensional cephalometric landmarking

Article dans une revue avec comité de lecture
Author
DOT, Gauthier
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
RAFFLENBEUL, Frédéric
199013 Université de Strasbourg [UNISTRA]
ARBOTTO, M.
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
GAJNY, Laurent
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
ROUCH, Philippe
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
SCHOUMAN, Thomas
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]

URI
http://hdl.handle.net/10985/18399
DOI
10.1016/j.ijom.2020.02.015
Date
2020
Journal
International Journal of Oral and Maxillofacial Surgery

Abstract

The aim of this systematic review was to assess the accuracy and reliability of automatic landmarking for cephalometric analysis of three-dimensional craniofacial images. We searched for studies that reported results of automatic landmarking and/or measurements of human head computed tomography or cone beam computed tomography scans in MEDLINE, Embase and Web of Science until March 2019. Two authors independently screened articles for eligibility. Risk of bias and applicability concerns for each included study were assessed using the QUADAS-2 tool. Eleven studies with test dataset sample sizes ranging from 18 to 77 images were included. They used knowledge-, atlas- or learning-based algorithms to landmark two to 33 points of cephalometric interest. Ten studies measured mean localization errors between manually and automatically detected landmarks. Depending on the studies and the landmarks, mean errors ranged from <0.50 mm to>5 mm. The two best-performing algorithms used a deep learning method and reported mean errors <2 mm for every landmark, approximating results of operator variability in manual landmarking. Risk of bias regarding patient selection and implementation of the reference standard were found, therefore the studies might have yielded overoptimistic results. The robustness of these algorithms needs to be more thoroughly tested in challenging clinical settings. PROSPERO registration number: CRD42019119637.

Files in this item

Name:
IBHGC_IJOMS_2020_DOT.pdf
Size:
1.470Mb
Format:
PDF
View/Open

Collections

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Related items

Showing items related by title, author, creator and subject.

  • Automatic 3-Dimensional Cephalometric Landmarking via Deep Learning 
    Article dans une revue avec comité de lecture
    DOT, Gauthier; SCHOUMAN, Thomas; CHANG, Shaole; RAFFLENBEUL, Frédéric; KERBRAT, Adeline; ROUCH, Philippe; GAJNY, Laurent (SAGE Publications, 2022-08-18)
    The increasing use of 3-dimensional (3D) imaging by orthodontists and maxillofacial surgeons to assess complex dentofacial deformities and plan orthognathic surgeries implies a critical need for 3D cephalometric analysis. ...
  • Three-Dimensional Cephalometric Landmarking and Frankfort Horizontal Plane Construction: Reproducibility of Conventional and Novel Landmarks 
    Article dans une revue avec comité de lecture
    DOT, Gauthier; RAFFLENBEUL, Frédéric; KERBRAT, Adeline; ROUCH, Philippe; GAJNY, Laurent; SCHOUMAN, Thomas (MDP, 2021)
    In some dentofacial deformity patients, especially patients undergoing surgical orthodontic treatments, Computed Tomography (CT) scans are useful to assess complex asymmetry or to plan orthognathic surgery. This assessment ...
  • Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework 
    Article dans une revue avec comité de lecture
    DOT, Gauthier; SCHOUMAN, Thomas; DUBOIS, Guillaume; ROUCH, Philippe; GAJNY, Laurent (Springer Science and Business Media LLC, 2022)
    Objectives To evaluate the performance of the nnU-Net open-source deep learning framework for automatic multi-task segmentation of craniomaxillofacial (CMF) structures in CT scans obtained for computer-assisted orthognathic ...
  • Biplanar Low-Dose Radiograph Is Suitable for Cephalometric Analysis in Patients Requiring 3D Evaluation of the Whole Skeleton 
    Article dans une revue avec comité de lecture
    KERBRAT, Adeline; RIVALS, Isabelle; DUPUY, Pauline; DOT, Gauthier; BERG, Britt-Isabelle; ATTALI, Valérie; SCHOUMAN, Thomas (MDPI AG, 2021)
    Background: The biplanar 2D/3D X-ray technology (BPXR) is a 2D/3D imaging system allowing simultaneous stereo-corresponding posteroanterior (PA) and lateral 2D views of the whole body. The aim of our study was to assess ...
  • Accuracy evaluation of CAD/CAM generated splints in orthognathic surgery: a cadaveric study 
    Article dans une revue avec comité de lecture
    SCHOUMAN, Thomas; ROUCH, Philippe; IMHOLZ, Benoït; FASEL, Jean; COURVOISIER, Delphine; SCOLOZZI, Paolo (BioMed Central, 2015)
    Introduction To evaluate the accuracy of CAD/CAM generated splints in orthognathic surgery by comparing planned versus actual post-operative 3D images. Methods Specific planning software (SimPlant® OMS Standalone 14.0) was ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales