Experimental and numerical multi-scale approach for Sheet-Molding-Compound composites fatigue prediction based on fiber-matrix interface cyclic damage
Article dans une revue avec comité de lecture
Auteur
Date
2020Journal
International Journal of FatigueRésumé
In this paper, a multi-scale approach is proposed to predict the stiffness reduction of a Sheet-Molding-Compound (SMC) composite submitted to low cycle fatigue (until 2.105 cycles). Strain-controlled tensile fatigue tests (R = 0.1) are carried out at various strain ranges. Damage is investigated at both macroscopic and microscopic scales through the evolutions of Young's modulus and SEM observations, after interrupted fatigue tests at different lifetime periods. The results show that the fatigue degradation of the composite is mainly controlled by fiber-matrix interface debonding. A quantitative analysis allows determining the threshold and kinetics of the fiber-matrix interface damage during cyclic loading as a function of the orientation of fibers. Moreover, a fiber-matrix interface damage criterion, taking into account the local cyclic normal and shear stresses at the interface, is introduced in the Mori and Tanaka approach in order to predict the loss of stiffness. The parameters of this local criterion are identified by reverse engineering on the basis of the experimental results described above. Finally, the predicted loss of stiffness is very consistent with the experimental results
Fichier(s) constituant cette publication
- Nom:
- PIMM_IJF_2020_ AYARI.pdf
- Taille:
- 3.281Mo
- Format:
- Description:
- Article
- Fin d'embargo:
- 2020-12-01
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureLARIBI, Mohamad-Amine; TAMBOURA, Sahbi; SHIRINBAYAN, Mohammadali; BI, R.Tie; BEN DALI, Hachmi; TCHARKHTCHI, Abbas; FITOUSSI, Joseph (Elsevier, 2020)Because of the high variability of SMC microstructure due to material flow during thermoforming, fatigue life prediction in real automotive structure represents a huge challenge. In this paper, we present a two-step ...
-
Article dans une revue avec comité de lectureTAMBOURA, Sahbi; LARIBI, Mohamad-Amine; SHIRINBAYAN, Mohammadali; BI, R. Tie; BEN DALI, Hachmi; TCHARKHTCHI, Abbas; FITOUSSI, Joseph (Elsevier, 2020)The majority of fatigue life prediction models which have been proposed for the Short Fiber Reinforced Composite (SFRC) materials have been developed for constant temperature. However, in real situations, SFRC structures ...
-
Article dans une revue avec comité de lectureAYARI, Houssem; IMADDAHEN, Amine; TAMBOURA, Sahbi; SHIRINBAYAN, Mohammadali; BEN DALI, Hachmi; TCHARKHTCHI, Abbas; FITOUSSI, Joseph (Springer Verlag (Germany), 2020)To reinforce the environmental standards, we need to strengthen the lightening of vehicles and to generalize new composite materials in order to reduce weight. To use these innovative composite materials in the mass ...
-
Micromechanical Modelling of Dynamic Behavior of Advanced Sheet Molding Compound (A-SMC) Composite Article dans une revue avec comité de lectureAYARI, Houssem; SHIRINBAYAN, Mohammadali; IMADDAHEN, Amine; TAMBOURA, Sahbi; BEN DALY, Hachmi; TCHARKHTCHI, Abbas; FITOUSSI, Joseph (Springer Verlag (Germany), 2020)Passive safety, particularly in the transport industry, requires maximizing the dissipation of energy and minimizing the decelerations undergone by a vehicle following a violent impact (crash). This paper proposes a strategy ...
-
Article dans une revue avec comité de lectureLARIBI, Mohamad-Amine; TAMBOURA, Sahbi; BEN DALI, Hachmi; TCHARKHTCHI, Abbas; FITOUSSI, Joseph (Elsevier, 2018)Industrial design of Short Fiber Reinforced Composites (SFRC) structures is subject to several compounding and processing steps of optimization. Moreover, these structures are often submitted to fatigue loading. Therefore, ...