The influence of a pressure wavepacket's characteristics on its acoustic radiation
Article dans une revue avec comité de lecture
Date
2015Journal
Journal of the Acoustical Society of AmericaAbstract
Noise generation by flows is modeled using a pressure wavepacket to excite the acoustic medium via a boundary condition of the homogeneous wave equation. The pressure wavepacket is a generic representation of the flow unsteadiness, and is characterized by a space envelope of pseudo-Gaussian shape and by a subsonic phase velocity. The space modulation yields energy in the supersonic range of the wavenumber spectrum, which is directly responsible for sound radiation and directivity. The influence of the envelope's shape on the noise emission is studied analytically and numerically, using an acoustic efficiency defined as the ratio of the acoustic power generated by the wavepacket to that involved in the modeled flow. The methodology is also extended to the case of acoustic propagation in a uniformly moving medium, broadening possibilities toward practical flows where organized structures play a major role, such as co-flow around cruising jet, cavity, and turbulent boundary layer flows. The results of the acoustic efficiency show significant sound pressure levels, especially for asymmetric wavepackets radiating in a moving medium.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureLOISEAU, Jean-Christophe; ROBINET, Jean-Christophe; CHERUBINI, Stefania; LERICHE, Emmanuel (Elsevier, 2015)The linear global instability and resulting transition to turbulence induced by a cylindrical roughness element of heighth and diameter d=3h immersed within an incompressible boundary layer flow along a flat plate is ...
-
Ouvrage scientifiqueLOISEAU, Jean-Christophe; CHERUBINI, Stefania; ROBINET, Jean-Christophe; LERICHE, Emmanuel (Springer, 2015)lobal instability analysis of the three-dimensional flow past two rough- ness elements of different shape, namely a cylinder and a bump, is presented. In both cases, the eigenspectrum is made of modes characterised by a ...
-
Article dans une revue avec comité de lectureBENGANA, Y.; LOISEAU, Jean-Christophe; ROBINET, Jean-Christophe; TUCKERMAN, L. S. (Cambridge University Press (CUP), 2019)A comprehensive study of the two-dimensional incompressible shear-driven flow in an open square cavity is carried out. Two successive bifurcations lead to two limit cycles with different frequencies and different numbers ...
-
Article dans une revue avec comité de lectureDUCOIN, A.; LOISEAU, Jean-Christophe; ROBINET, Jean-Christophe (Elsevier, 2016)The objective of this work is to investigate numerically the different physical mechanisms of the transition to turbulence of a separated boundary-layer flow over an airfoil at low angle of attack. In this study, the ...
-
Chapitre d'ouvrage scientifiqueLOISEAU, Jean-Christophe; BUCCI, Michele Alessandro; CHERUBINI, Stefania; ROBINET, Jean-Christophe (Springer, 2018)With the ever increasing computational power available and the development of high-performances computing, investigating the properties of realistic very large-scale nonlinear dynamical systems has become reachable. It ...