• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Natural Element Method for the Simulation of Structures and Processes

Ouvrage scientifique
Auteur
CHINESTA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
CESCOTTO, Serge
93075 Université de Liège
CUETO, Elías
95355 University of Zaragoza - Universidad de Zaragoza [Zaragoza]
LORONG, Philippe
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/18738
Date
2013

Résumé

Computational mechanics is the discipline concerned with the use of computational methods to study phenomena governed by the principles of mechanics. Before the emergence of computational science (also called scientific computing) as a "third way" besides theoretical and experimental sciences, computational mechanics was widely considered to be a sub-discipline of applied mechanics. It is now considered to be a sub-discipline within computational science. This book presents a recent state of the art on the foundations and applications of the meshless natural element method in computational mechanics, including structural mechanics and material forming processes involving solids and Newtonian and non-Newtonian fluids.(4th cover, excerpt from publisher's website)

Fichier(s) constituant cette publication

Nom:
PIMM_BOOK_2013_CHINESTA.pdf
Taille:
288.2Ko
Format:
PDF
Description:
ouvrages scientifiques
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Natural Element Method for the Simulation of Structures and Processes 
    Ouvrage scientifique
    CHINESTA, Francisco; CESCOTTO, Serge; CUETO, Elias; LORONG, Philippe (WILEY, 2011)
    The Natural Element Method (NEM) is halfway between meshless methods and the finite element method. This book presents a recent state of the art on the foundations and applications of the meshless natural element method ...
  • Crossing Scales: Data-Driven Determination of the Micro-scale Behavior of Polymers From Non-homogeneous Tests at the Continuum-Scale 
    Article dans une revue avec comité de lecture
    AMORES, Víctor J.; MONTÁNS, Francisco J.; CUETO, Elías; CHINESTA, Francisco (Frontiers Media SA, 2022-05)
    We propose an efficient method to determine the micro-structural entropic behavior of polymer chains directly from a sufficiently rich non-homogeneous experiment at the continuum scale. The procedure is developed in 2 ...
  • On the effective conductivity and the apparent viscosity of a thin rough polymer interface using PGD‐based separated representations 
    Article dans une revue avec comité de lecture
    AMMAR, Amine; GHNATIOS, Chady; DELPLACE, Frank; BARASINSKI, Anais; DUVAL, Jean-Louis; CUETO, Elias; CHINESTA, Francisco (Wiley, 2020)
    Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion ...
  • Separated representation of incremental elastoplastic simulations 
    Communication avec acte
    NASRI, Mohamed Aziz; AGUADO, Jose Vicente; AMMAR, Amine; CUETO, Elias; CHINESTA, Francisco; MOREL, Franck; ROBERT, Camille; EL AREM, Saber (Key Engineering Materials, 2015)
    Forming processes usually involve irreversible plastic transformations. The calculation in that case becomes cumbersome when large parts and processes are considered. Recently Model Order Reduction techniques opened new ...
  • Structure-preserving neural networks 
    Article dans une revue avec comité de lecture
    HERNÁNDEZ, Quercus; BADÍAS, Alberto; GONZÁLEZ, David; CHINESTA, Francisco; CUETO, Elías (Elsevier, 2021)
    We develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales