• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards a high-resolution numerical strategy based on separated representations

Article dans une revue avec comité de lecture
Author
ccCUETO, Elias
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
GONZALEZ, David
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
ccAMMAR, Amine
705 Laboratoire de rhéologie [LR]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/6522
DOI
10.1007/s12289-008-0211-0
Date
2008

Abstract

Many models in Science and Engineering are defined in spaces (the so-called conformation spaces) of high dimensionality. In kinetic theory, for instance, the micro scale of a fluid evolves in a space whose number of dimensions is much higher than the usual physical space (two or three). Models defined in such a framework suffer from the curse of dimensionality, since the complexity of the problem growths exponentially with the number of dimensions. This curse of dimensionality makes this class of problems nearly intractable if we perform a standard discretization, say, with finite element methods, for instance. Problems defined in two or three-dimensional spaces, but densely discretized along each spatial dimension are also hardly tractable by finite element methods. In this paper we present some recent results concerning a method based on the method of separation of variables, originally developed in [1]. We focus on an efficient imposition of essential non-homogeneous boundary conditions and the treatment of problems with a very high number of degrees of freedom.

Files in this item

Name:
p_Go_253.pdf
Size:
2.035Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • PGD-Based Computational Vademecum for Efficient Design, Optimization and Control 
    Article dans une revue avec comité de lecture
    ccCHINESTA SORIA, Francisco; LEYGUE, Adrien; BORDEU, Felipe; AGUADO, Jose Vicente; ccCUETO, Elias; GONZALEZ, David; ALFARO, Icíar; ccAMMAR, Amine; HUERTA, Antonio (Springer Verlag, 2013)
    In this paper we are addressing a new paradigm in the field of simulation-based engineering sciences (SBES) to face the challenges posed by current ICT technologies. Despite the impressive progress attained by simulation ...
  • A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition 
    Article dans une revue avec comité de lecture
    IBAÑEZ, Ruben; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; GONZALEZ, David; ccCUETO, Elias; HUERTA, Antonio; DUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Wiley, 2018)
    Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional ...
  • Real-time in silico experiments on gene regulatory networks and surgery simulation on handheld devices 
    Article dans une revue avec comité de lecture
    ALFARO, Icíar; GONZALEZ, David; BORDEU, Felipe; LEYGUE, Adrien; ccAMMAR, Amine; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (Springer Verlag, 2014)
    Simulation of all phenomena taking place in a surgical procedure is a formidable task that involves, when possible, the use of supercomputing facilities over long time periods. However, decision taking in the operating ...
  • A Data-Driven Learning Method for Constitutive Modeling: Application to Vascular Hyperelastic Soft Tissues 
    Article dans une revue avec comité de lecture
    GONZÁLEZ, David; GARCÍA-GONZÁLEZ, Alberto; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (MDPI, 2020)
    We address the problem of machine learning of constitutive laws when large experimental deviations are present. This is particularly important in soft living tissue modeling, for instance, where large patient-dependent ...
  • A thermodynamics-informed active learning approach to perception and reasoning about fluids 
    Article dans une revue avec comité de lecture
    ccMOYA GARCÍA, Beatriz; ccBADIAS, Alberto; GONZALEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    Learning and reasoning about physical phenomena is still a challenge in robotics development, and computational sciences play a capital role in the search for accurate methods able to provide explanations for past events ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales