• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Foreword

Article dans une revue avec comité de lecture
Author
ccCUETO, Elias
95355 Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
BREITKOPF, Piotr
93027 Université de Technologie de Compiègne [UTC]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/18796
DOI
10.1016/j.crme.2018.04.012
Date
2018
Journal
Comptes Rendus Mécanique

Abstract

The range of topics covers a vivid scope of recent research subjects, on the frontier between applied mathematics and computational mechanics. The contributions range from the fundamentals of solid mechanics, and PDE revisited, through the physical interpretation of numerical models, mathematical foundations of reduced-order modeling up to methodological developments in time and parametric domains.

Files in this item

Name:
PIMM_CRM_2018_CHINESTA.pdf
Size:
231.8Kb
Format:
PDF
Description:
Article
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Crossing Scales: Data-Driven Determination of the Micro-scale Behavior of Polymers From Non-homogeneous Tests at the Continuum-Scale 
    Article dans une revue avec comité de lecture
    AMORES, Víctor J.; MONTÁNS, Francisco J.; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (Frontiers Media SA, 2022-05)
    We propose an efficient method to determine the micro-structural entropic behavior of polymer chains directly from a sufficiently rich non-homogeneous experiment at the continuum scale. The procedure is developed in 2 ...
  • Learning non-Markovian physics from data 
    Article dans une revue avec comité de lecture
    GONZÁLEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Elsevier, 2021)
    We present a method for the data-driven learning of physical phenomena whose evolution in time depends on history terms. It is well known that a Mori-Zwanzig-type projection produces a description of the physical phenomena ...
  • Learning data-driven reduced elastic and inelastic models of spot-welded patches 
    Article dans une revue avec comité de lecture
    REILLE, Agathe; CHAMPANEY, Victor; DAIM, Fatima; TOURBIER, Yves; HASCOET, Nicolas; GONZALEZ, David; ccCUETO, Elias; DUVAL, Jean Louis; ccCHINESTA SORIA, Francisco (EDP Sciences, 2021)
    Solving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized ...
  • On the effective conductivity and the apparent viscosity of a thin rough polymer interface using PGD‐based separated representations 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; DELPLACE, Frank; BARASINSKI, Anais; DUVAL, Jean-Louis; ccCUETO, Elias; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Wiley, 2020)
    Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion ...
  • Structure-preserving neural networks 
    Article dans une revue avec comité de lecture
    HERNÁNDEZ, Quercus; BADÍAS, Alberto; GONZÁLEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Elsevier, 2021)
    We develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales