• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the data-driven modeling of reactive extrusion

Article dans une revue avec comité de lecture
Author
IBAÑEZ, Ruben
CASTERAN, Fanny
194495 Université Claude Bernard Lyon 1 [UCBL]
ARGERICH, Clara
HASCOET, Nicolas
CASSAGNAU, Philippe
538166 Université Claude Bernard Lyon 1 - UFR Sciences et techniques des activités physiques et sportives [UCBL UFR STAPS]
ccGHNATIOS, Chady
533922 Notre Dame University-Louaize [Lebanon] [NDU]
ccAMMAR, Amine
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/19137
DOI
10.3390/fluids5020094
Date
2020
Journal
Fluids

Abstract

This paper analyzes the ability of different machine learning techniques, able to operate in the low-data limit, for constructing the model linking material and process parameters with the properties and performances of parts obtained by reactive polymer extrusion. The use of data-driven approaches is justified by the absence of reliable modeling and simulation approaches able to predict induced properties in those complex processes. The experimental part of this work is based on the in situ synthesis of a thermoset (TS) phase during the mixing step with a thermoplastic polypropylene (PP) phase in a twin-screw extruder. Three reactive epoxy/amine systems have been considered and anhydride maleic grafted polypropylene (PP-g-MA) has been used as compatibilizer. The final objective is to define the appropriate processing conditions in terms of improving the mechanical properties of these new PP materials by reactive extrusion.

Files in this item

Name:
PIMM_ F_2020_ IBANEZ.pdf
Size:
761.2Kb
Format:
PDF
Description:
Article
View/Open

Collections

  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Application of Machine Learning Tools for the Improvement of Reactive Extrusion Simulation 
    Article dans une revue avec comité de lecture
    CASTÉRAN, Fanny; IBANEZ, Ruben; ARGERICH, Clara; DELAGE, Karim; CASSAGNAU, Philippe; ccCHINESTA SORIA, Francisco (Wiley-VCH Verlag, 2020)
    The purpose of this paper is to combine a classical 1D twin-screw extrusion model with machine learning techniques to obtain accurate predictions of a complex system despite few data. Systems involving reactive polyethylene ...
  • Data-Driven Modelling of Polyethylene Recycling under High-Temperature Extrusion 
    Article dans une revue avec comité de lecture
    CASTÉRAN, Fanny; DELAGE, Karim; HASCOËT, Nicolas; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco; CASSAGNAU, Philippe (MDPI AG, 2022-02-18)
    Two main problems are studied in this article. The first one is the use of the extrusion process for controlled thermo-mechanical degradation of polyethylene for recycling applications. The second is the data-based modelling ...
  • Incremental dynamic mode decomposition: A reduced-model learner operating at the low-data limit 
    Article dans une revue avec comité de lecture
    REILLE, Agathe; HASCOET, Nicolas; ccCUETO, Elias; DUVAL, Jean-Louis; KEUNINGS, Roland; ccGHNATIOS, Chady; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2019)
    The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then ...
  • Code2vect: An efficient heterogenous data classifier and nonlinear regression technique 
    Article dans une revue avec comité de lecture
    ARGERICH MARTÍN, Clara; IBÁÑEZ PINILLO, Rubén; BARASINSKI, Anaïs; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2019)
    The aim of this paper is to present a new classification and regression algorithm based on Artificial Intelligence. The main feature of this algorithm, which will be called Code2Vect, is the nature of the data to treat: ...
  • Tape surface characterization and classification in automated tape placement processability: Modeling and numerical analysis 
    Article dans une revue avec comité de lecture
    ARGERICH, Clara; IBÁÑEZ, Rubén; LEÓN, Angel; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (AIMS Press, 2018)
    Abstract: Many composite forming processes are based on the consolidation of preimpregnated preforms of different types, e.g., sheets, tapes, .... Composite plies are put in contact using different technologies and ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales