Parametric Electromagnetic Analysis of Radar-Based Advanced Driver Assistant Systems
Type
Articles dans des revues avec comité de lectureAuthor
Abstract
Efficient and optimal design of radar-based Advanced Driver Assistant Systems (ADAS) needs the evaluation of many different electromagnetic solutions for evaluating the impact of the radome on the electromagnetic wave propagation. Because of the very high frequency at which these devices operate, with the associated extremely small wavelength, very fine meshes are needed to accurately discretize the electromagnetic equations. Thus, the computational cost of each numerical solution for a given choice of the design or operation parameters, is high (CPU time consuming and needing significant computational resources) compromising the efficiency of standard optimization algorithms. In order to alleviate the just referred difficulties the present paper proposes an approach based on the use of reduced order modeling, in particular the construction of a parametric solution by employing a non-intrusive formulation of the Proper Generalized Decomposition, combined with a powerful phase-angle unwrapping strategy for accurately addressing the electric and magnetic fields interpolation, contributing to improve the design, the calibration and the operational use of those systems.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
IBAÑEZ, R.; ABISSET-CHAVANNE, Emmanuelle; CUETO, Elías G.; AMMAR, Amine; DUVAL, Jean Louis; CHINESTA, Francisco (Springer, 2019)Compressed sensing is a signal compression technique with very remarkable properties. Among them, maybe the most salient one is its ability of overcoming the Shannon–Nyquist sampling theorem. In other words, it is able to ...
-
QUARANTA, Giacomo; HAUG, Eberhard; DUVAL, Jean Louis; CHINESTA, Francisco (Springer, 2020)Additive manufacturing is the more and more considered in industry, however efficient simulation tools able to perform accurate predictions are still quite limited. The main difficulties for an efficient simulation are ...
-
IBÁÑEZ PINILLO, Rubén; AMMAR, Amine; CUETO, Elías G.; HUERTA, Antonio; DUVAL, Jean Louis; CHINESTA, Francisco (Wiley, 2019)Solutions of partial differential equations could exhibit a multiscale behavior. Standard discretization techniques are constraints to mesh up to the finest scale to predict accurately the response of the system. The ...
-
REILLE, Agathe; HASCOËT, Nicolas; GHNATIOS, Chady; AMMAR, Amine; CUETO, Elías G.; DUVAL, Jean Louis; CHINESTA, Francisco; KEUNINGS, Roland (ELSEVIER, 2019)The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then ...
-
Structural health monitoring by combining machine learning and dimensionality reduction techniques QUARANTA, Giacomo; LOPEZ, Elena; ABISSET-CHAVANNE, Emmanuelle; DUVAL, Jean Louis; HUERTA, Antonio; CHINESTA, Francisco (Scipedia S.L., 2019)Structural Health Monitoring is of major interest in many areas of structural mechanics. This paper presents a new approach based on the combination of dimensionality reduction and data-mining techniques able to differentiate ...