• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

DATA-DRIVEN AUTOREGRESSIVE MODEL IDENTIFICATION FOR STRUCTURAL HEALTH MONITORING IN ANISOTROPIC COMPOSITE PLATES

Communication avec acte
Author
DA SILVA, Samuel
225522 Universidade Estadual Paulista Júlio de Mesquita Filho = São Paulo State University [UNESP]
PAIXAO, Jessé
225522 Universidade Estadual Paulista Júlio de Mesquita Filho = São Paulo State University [UNESP]
ccMECHBAL, Nazih
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccRÉBILLAT, Marc

URI
http://hdl.handle.net/10985/19537
Date
2019

Abstract

A simple data-driven AutoRegressive (AR) model may be used to assess a model to describe and to predict the time-series outputs of the PZT sensors receiving Lamb waves for different operating conditions in composite structures. Thus, this paper presents the potentiality of the use of a set of AR models to detect, locate, and, manly, to extrapolate a damage sensitive index based on changes in onestep- ahead prediction errors. To illustrate this proposal, an aeronautical composite panel with bonded piezoelectric elements, that act both as sensors and actuators, is used to study the relationship between the variation of the parameters of the identified model and the presence of various simulated damage. A damage progression evaluation by extrapolating the AR parameters is also suggested and examined based on cubic spline functions to verify the future state and to observe how the damage could evolute, based on some simplified assumptions. This step could help to make a decision about a possible required repair without adopting a complicated and costly physical model.

Files in this item

Name:
PIMM_SMART_2019_REBILLAT3.pdf
Size:
918.6Kb
Format:
PDF
Description:
Communication avec actes
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Extrapolation of AR models using cubic splines for damage progression evaluation in composite structures 
    Article dans une revue avec comité de lecture
    DA SILVA, Samuel; PAIXÃO, Jessé; ccRÉBILLAT, Marc; ccMECHBAL, Nazih (SAGE Publications, 2020)
    This paper presents the potentiality of the use of extrapolation of a set of Auto-Regressive (AR) models to inspect a future damage sensitive indices based on changes in one-step-ahead prediction errors. The key idea is ...
  • Gaussian Process NARX Model for Damage Detection in Composite Aircraft Structures 
    Article dans une revue avec comité de lecture
    DA SILVA, Samuel; VILLANI, Luis G. G.; ccRÉBILLAT, Marc; ccMECHBAL, Nazih (ASME International, 2021-12)
    This article demonstrates the Gaussian process regression model’s applicability combined with a nonlinear autoregressive exogenous (NARX) framework using experimental data measured with PZTs’ patches bonded in a composite ...
  • Improving Lamb Wave detection for SHM using a dedicated LWDS electronics 
    Communication avec acte
    JAUSSAUD, Gladys; REBUFA, Jocelyn; FOURNIER, Marc; LOGEAIS, Matthieu; BENCHEIKH, Nabil; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (NTD, 2019)
    In the context of Condition Based Maintenance (CBM) for aircrafts, Structural Health Monitoring (SHM) is one main field of research. Detection and localization of damages in a structure request reliability of the equipment ...
  • Laser shock a novel way to generate calibrated delamination in composites: concept and first results 
    Communication avec acte
    GHRIB, Meriem; BERTHE, Laurent; ECAULT, Romain; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (2015)
    Structural Health Monitoring (SHM) has been gaining importance in recent years. SHM aims at providing structures with similar functionality as the biological nervous system and it is organized into four main steps: detection, ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales