• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
  • Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A 3D DEM simulation to study the influence of material and process parameters on spreading of metallic powder in additive manufacturing

Article dans une revue avec comité de lecture
Author
MARCHAIS, Kevin
ccGIRARDOT, Jeremie
METTON, Charlotte
505477 Safran Tech
ccIORDANOFF, Ivan
1002421 Institut de Mécanique et d'Ingénierie [I2M]

URI
http://hdl.handle.net/10985/19856
DOI
10.1007/s40571-020-00380-z
Date
2021
Journal
Computational Particle Mechanics

Abstract

The aim of this work is to understand the granular behavior of metal powder during the spreading phase of the LBM process in order to study the effect of powder properties and process parameters on the quality of the layer deposited before laser fusion. This is a numerical work performed with simulations based on the discrete element method where each powder grain is simulated. The numerical model takes into account different interactions such as repulsion, dissipation, friction and adhesion that occur when there is contact between two bodies. The powder grains are assumed to be perfectly spherical. The surface roughness of the plate and spreader is taken into account in the simulations as it has a significant impact on the powder bed spreading. The effect of material parameters such as friction and adhesion is studied. The influence of the spreading speed is also studied. The results show that different friction values give the same results on the final properties of the powder bed while adhesion plays a significant role. Finally, lower spreading speed result in a better powder bed.

Files in this item

Name:
I2M_CPM_2021_GIRARDOT.pdf
Size:
4.302Mb
Format:
PDF
Embargoed until:
2021-06-05
View/Open

Collections

  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)

Related items

Showing items related by title, author, creator and subject.

  • Numerical investigations on a yarn structure at the microscale towards scale transition 
    Article dans une revue avec comité de lecture
    DEL SORBO, Pietro; ccGIRARDOT, Jeremie; ccDAU, Frédéric; ccIORDANOFF, Ivan (Elsevier, 2017)
    Since the beginning of the last decade, few examples of multifilament models for dry fabrics have been presented in literature. This work deals with the simulation of a single yarn subjected to transverse impact. Inspired ...
  • Modelling the wear evolution of a single alumina abrasive grain: Analyzing the influence of crystalline structure 
    Article dans une revue avec comité de lecture
    GODINO, L.; POMBO, I.; ccGIRARDOT, Jeremie; SANCHEZ, J.A.; ccIORDANOFF, Ivan (Elsevier, 2020)
    The grinding process is continuously adapting to industrial requirements. New advanced materials have been developed, which have been ground. In this regard, new abrasive grains have emerged to respond to the demands of ...
  • Laser-induced plume investigated by finite element modelling and scaling of particle entrainment in laser powder bed fusion 
    Article dans une revue avec comité de lecture
    MAYI, Yaasin; PEYRE, Patrice; BELLET, Michel; METTON, Charlotte; MORICONI, Clara; FABBRO, Rémy; ccDAL, Morgan (IOP Publishing, 2019)
    Although metal vaporisation has been observed in several laser processes such as drilling or welding, vapour plume expansion and its induced side effects are not fully understood. Especially, this phenomenon is garnering ...
  • Erratum: “Transient dynamics and stability of keyhole at threshold in laser powder bed fusion regime investigated by finite element modeling” [J. Laser Appl. 33, 012024 (2021)] 
    Article dans une revue avec comité de lecture
    MAYI, Yaasin A.; PEYRE, Patrice; BELLET, Michel; METTON, Charlotte; MORICONI, Clara; FABBRO, Remy; ccDAL, Morgan (Laser Institute of America, 2021)
    Correction
  • Transient dynamics and stability of keyhole at threshold in laser powder bed fusion regime investigated by finite element modeling 
    Article dans une revue avec comité de lecture
    MAYI, Yaasin A.; PEYRE, Patrice; BELLET, Michel; METTON, Charlotte; MORICONI, Clara; FABBRO, Remy; ccDAL, Morgan (Laser Institute of America, 2021)
    A Finite element model is developed with a commercial code to investigate the keyhole dynamics and stability at keyhole threshold, a fusion regime characteristic to laser microwelding or to Laser Powder Bed Fusion. The ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales