Deep learning of thermodynamics-aware reduced-order models from data
Article dans une revue avec comité de lecture
Author
Date
2021Journal
Computer Methods in Applied Mechanics and EngineeringAbstract
We present an algorithm to learn the relevant latent variables of a large-scale discretized physical system and predict its time evolution using thermodynamically-consistent deep neural networks. Our method relies on sparse autoencoders, which reduce the dimensionality of the full order model to a set of sparse latent variables with no prior knowledge of the coded space dimensionality. Then, a second neural network is trained to learn the metriplectic structure of those reduced physical variables and predict its time evolution with a so-called structure-preserving neural network. This data-based integrator is guaranteed to conserve the total energy of the system and the entropy inequality, and can be applied to both conservative and dissipative systems. The integrated paths can then be decoded to the original full-dimensional manifold and be compared to the ground truth solution. This method is tested with two examples applied to fluid and solid mechanics.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureHERNÁNDEZ, Quercus; BADÍAS, Alberto; GONZÁLEZ, David; CHINESTA, Francisco; CUETO, Elías (Elsevier, 2021)We develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of ...
-
Article dans une revue avec comité de lectureHERNÁNDEZ, Quercus; BADÍAS, Alberto; GONZÁLEZ, David; CHINESTA, Francisco; CUETO, Elías (Elsevier, 2020)We develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of ...
-
Article dans une revue avec comité de lectureBADÍAS, Alberto; GONZÁLEZ, David; ALFARO, Iciar; CHINESTA, Francisco; CUETO, Elías (Wiley, 2020)We present a real-time method for computing the mechanical interaction between real and virtual objects in an augmented reality environment. Using model order reduction methods we are able to estimate the physical behavior ...
-
Article dans une revue avec comité de lectureBADIAS, Alberto; ALFARO, Iciar; GONZALEZ, David; CHINESTA, Francisco; CUETO, Elias (Elsevier, 2018)In this work we explore the possibilities of reduced order modeling for augmented reality applications. We consider parametric reduced order models based upon separate (affine) parametric dependence so as to speedup the ...
-
Article dans une revue avec comité de lectureBADÍAS, Alberto; CURTIT, Sarah; GONZÁLEZ, David; ALFARO, Iciar; CHINESTA, Francisco; CUETO, Elías G. (Wiley, 2019)While modern CFD tools are able to provide the user with reliable and accurate simulations, there is a strong need for interactive design and analysis tools. State-of-the-art CFD software employs massive resources in terms ...