Formability prediction using bifurcation criteria and GTN damage model
Article dans une revue avec comité de lecture
Date
2021Journal
International Journal of Mechanical SciencesRésumé
In this paper, four plastic instability criteria, which are based on the bifurcation theory, are coupled with the GTN damage model for the prediction of diffuse and localized necking. General bifurcation (GB) criterion and limit-point bifurcation (LPB) criterion are used to predict diffuse necking, while loss of ellipticity (LOE) criterion and loss of strong ellipticity (LOSE) criterion are used to predict localized necking. The resulting constitutive equations and instability criteria are implemented into the finite element code ABAQUS/Standard. The constitutive equations are formulated within the framework of large deformations and fully three-dimensional approach. Since the developed numerical tools have intended applications mainly for thin sheet metals; therefore, the plane-stress conditions are considered within the instability criteria. The present contribution focuses on the effect of destabilizing mechanisms, due to non-associative plasticity and non-normal plastic flow rule, on the prediction of forming limit diagrams (FLDs). Theoretical classification of the bifurcation criteria, in terms of their order of prediction of critical necking strains, is first presented. Then, several variants of the GTN model are combined with the bifurcation criteria for the prediction of FLDs for fictitious materials. It is shown that the hierarchical prediction order of the different instability criteria is consistent with the theoretical classification, for all the considered variants of the GTN model. More specifically, it is shown that the GB criterion provides a lower bound to all bifurcation criteria, in terms of necking prediction, while the LOE criterion represents an upper bound.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureThe scientific literature has shown the strong effect of void size on material response. Several yield functions have been developed to incorporate the void size effects in ductile porous materials. Based on the interface ...
-
Communication avec acteFor biaxial stretching strain paths, which are typically encountered in sheet metal forming, the stress triaxiality ranges from 0.33 to 0.67. At this low level of triaxiality, voids change their shape from spherical to ...
-
Article dans une revue avec comité de lectureNASIR, Muhammad Waqar; CHALAL, Hocine; ABED-MERAIM, Farid (Springer Science and Business Media LLC, 2021)To prevent the occurrence of localized necking, the concept of forming limit diagram is often used, thus playing an important role in sheet metal forming processes. The aim of the present study is to develop a numerical ...
-
Article dans une revue avec comité de lectureThin structures are commonly designed and employedin engineering industries to save material, reduce weight and improve the overall performance of products. The finite element (FE) simulation of such thin structural ...
-
Article dans une revue avec comité de lectureIn this contribution, the formulation of the SHB8PS continuum shell finite element is extended to anisotropic elastic-plastic behavior models with combined isotropic-kinematic hardening at large deformations. The resulting ...