• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
  • Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimation of 3D Body Center of Mass Acceleration and Instantaneous Velocity from a Wearable Inertial Sensor Network in Transfemoral Amputee Gait: A Case Study

Article dans une revue avec comité de lecture
Author
SIMONETTI, Emeline
452003 Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System [IUC-Bohnes]
564850 Institution Nationale des Invalides - Centre d’Etudes et de Recherche sur l’Appareillage des Handicapés [INI/CERAH]
BERGAMINI, Elena
452003 Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System [IUC-Bohnes]
VANNOZZI, Giuseppe
452003 Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System [IUC-Bohnes]
BASCOU, Joseph
564850 Institution Nationale des Invalides - Centre d’Etudes et de Recherche sur l’Appareillage des Handicapés [INI/CERAH]
ccPILLET, Helene
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]

URI
http://hdl.handle.net/10985/20322
DOI
10.3390/s21093129
Date
2021
Journal
Sensors

Abstract

The analysis of the body center of mass (BCoM) 3D kinematics provides insights on crucial aspects of locomotion, especially in populations with gait impairment such as people with amputation. In this paper, a wearable framework based on the use of different magneto-inertial measurement unit (MIMU) networks is proposed to obtain both BCoM acceleration and velocity. The proposed framework was validated as a proof of concept in one transfemoral amputee against data from force plates (acceleration) and an optoelectronic system (acceleration and velocity). The impact in terms of estimation accuracy when using a sensor network rather than a single MIMU at trunk level was also investigated. The estimated velocity and acceleration reached a strong agreement (ρ > 0.89) and good accuracy compared to reference data (normalized root mean square error (NRMSE) < 13.7%) in the anteroposterior and vertical directions when using three MIMUs on the trunk and both shanks and in all three directions when adding MIMUs on both thighs (ρ > 0.89, NRMSE ≤ 14.0% in the mediolateral direction). Conversely, only the vertical component of the BCoM kinematics was accurately captured when considering a single MIMU. These results suggest that inertial sensor networks may represent a valid alternative to laboratory-based instruments for 3D BCoM kinematics quantification in lower-limb amputees.

Files in this item

Name:
IBHCG_Sensors_2021_Simonetti.pdf
Size:
2.842Mb
Format:
PDF
View/Open
CC BY
This document is available under CC BY license

Collections

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Related items

Showing items related by title, author, creator and subject.

  • Gait event detection using inertial measurement units in people with transfemoral amputation: a comparative study 
    Article dans une revue avec comité de lecture
    SIMONETTI, Emeline; VILLA, Coralie; BASCOU, Joseph; VANNOZZI, Giuseppe; BERGAMINI, Elena; ccPILLET, Helene (Springer Science and Business Media LLC, 2019)
    In recent years, inertial measurement units (IMUs) have been proposed as an alternative to force platforms and pressure sensors for gait events (i.e., initial and final contacts) detection. While multiple algorithms have ...
  • Three-dimensional acceleration of the body center of mass in people with transfemoral amputation: Identification of a minimal body segment network 
    Article dans une revue avec comité de lecture
    SIMONETTI, Emeline; BERGAMINI, Elena; BASCOU, Joseph; VANNOZZI, Giuseppe; ccPILLET, Helene (Elsevier BV, 2021)
    Background: The analysis of biomechanical parameters derived from the body center of mass (BCoM) 3D motion allows for the characterization of gait impairments in people with lower-limb amputation, assisting in their ...
  • On the impact of the erroneous identification of inertial sensors’ locations on segments and whole-body centers of mass accelerations: a sensitivity study in one transfemoral amputee 
    Article dans une revue avec comité de lecture
    BASEL, Joseph; SIMONETTI, Emeline; BERGAMINI, Elena; ccPILLET, Helene (Springer Science and Business Media LLC, 2021)
    The kinematics of the body center of mass (bCoM) may provide crucial information supporting the rehabilitation process of people with transfemoral amputation. The use of magneto-inertial measurement units (MIMUs) is promising ...
  • Manual wheelchair biomechanics while overcoming environmental barriers: a systematic review 
    Article dans une revue avec comité de lecture
    ROUVIER, Théo; LOUESSARD, Aude; ccSIMONETTI, Emeline; HYBOIS, Samuel; ccBASCOU, Joseph; PONTONNIER, Charles; ccPILLET, Helene; ccSAURET, Christophe (Public Library of Science, 2022-06-23)
    During manual wheelchair (MWC) locomotion, the user's upper limbs are subject to heavy stresses and fatigue because the upper body is permanently engaged to propel the MWC. These stresses and fatigue vary according to the ...
  • Analyzing Intra-Cycle Velocity Profile and Trunk Inclination during Wheelchair Racing Propulsion 
    Article dans une revue avec comité de lecture
    POULET, Yoann; BRASSART, Florian; ccSIMONETTI, Emeline; ccPILLET, Helene; FAUPIN, Arnaud; ccSAURET, Christophe (MDPI AG, 2022-12)
    The analysis of intra-cycle velocity profile of manual wheelchair (MWC) users has been used to highlight the significant role of trunk inertia in propulsion biomechanics. Maximal wheelchair linear velocity has previously ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales