On the non-quadratic defect energy in strain gradient crystal plasticity
Communication avec acte
Date
2019Abstract
Strain gradient crystal plasticity (SGCP) represents a very promising way to account for size effects in miniaturized components, thanks to the intrinsic length scale(s) embedded. Most of the existing SGCP models are based on a quadratic form of defect energy. However, it has recently been shown that this form leads to physically unrealistic results concerning the size-dependence of the mechanical response of miniaturized components. A generalized non-quadratic form is proposed in this work which aims to study the influence of the defect energy order on the global response of size-dependent materials.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureThe present paper proposes a flexible Gurtin-type strain gradient crystal plasticity (SGCP) model based on generalized non-quadratic defect energy and uncoupled constitutive assumption for dissipative processes. A power-law ...
-
Communication sans acteStrain localization is an important plastic instability process occurring prior to fracture. It is usually observed in the form of narrow bands of intense plastic shear strain in deformed bodies undergoing severe inhomogeneous ...
-
Communication sans acteThanks to their capabilities in capturing size effects, strain gradient plasticity theories have received a strong scientific interest in the last two decades. However, despite the great scientific effort on these theories, ...
-
Article dans une revue avec comité de lectureThe present paper aims at providing a comprehensive investigation of the abilities and limitations of strain gradient crystal plasticity (SGCP) theories in capturing different kinds of localization modes in single crystals. ...
-
Communication sans acteStrain localization is an important plastic instability process occurring prior to fracture. It is usually observed in the form of narrow bands of intense plastic shear strain in deformed bodies undergoing severe inhomogeneous ...