• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the non-quadratic defect energy in strain gradient crystal plasticity

Communication avec acte
Author
CAI, Lei
ccJEBAHI, Mohamed
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccABED-MERAIM, Farid 

URI
http://hdl.handle.net/10985/20356
Date
2019

Abstract

Strain gradient crystal plasticity (SGCP) represents a very promising way to account for size effects in miniaturized components, thanks to the intrinsic length scale(s) embedded. Most of the existing SGCP models are based on a quadratic form of defect energy. However, it has recently been shown that this form leads to physically unrealistic results concerning the size-dependence of the mechanical response of miniaturized components. A generalized non-quadratic form is proposed in this work which aims to study the influence of the defect energy order on the global response of size-dependent materials.

Files in this item

Name:
LEM3_CSMA_2019_CAI.pdf
Size:
464.1Kb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Strain gradient crystal plasticity model based on generalized non-quadratic defect energy and uncoupled dissipation 
    Article dans une revue avec comité de lecture
    ccJEBAHI, Mohamed; CAI, Lei; ccABED-MERAIM, Farid  (Elsevier, 2020)
    The present paper proposes a flexible Gurtin-type strain gradient crystal plasticity (SGCP) model based on generalized non-quadratic defect energy and uncoupled constitutive assumption for dissipative processes. A power-law ...
  • On the application of strain gradient crystal plasticity to study strain localization phenomena in single crystals 
    Communication sans acte
    CAI, Lei; ccJEBAHI, Mohamed; ccABED-MERAIM, Farid  (2021)
    Strain localization is an important plastic instability process occurring prior to fracture. It is usually observed in the form of narrow bands of intense plastic shear strain in deformed bodies undergoing severe inhomogeneous ...
  • Uncoupled dissipation assumption to control elastic gaps in Gurtin-type strain gradient models 
    Communication sans acte
    ccJEBAHI, Mohamed; CAI, Lei; ccABED-MERAIM, Farid  (2020)
    Thanks to their capabilities in capturing size effects, strain gradient plasticity theories have received a strong scientific interest in the last two decades. However, despite the great scientific effort on these theories, ...
  • Strain Localization Modes within Single Crystals Using Finite Deformation Strain Gradient Crystal Plasticity 
    Article dans une revue avec comité de lecture
    CAI, Lei; ccJEBAHI, Mohamed; ccABED-MERAIM, Farid  (MDPI AG, 2021)
    The present paper aims at providing a comprehensive investigation of the abilities and limitations of strain gradient crystal plasticity (SGCP) theories in capturing different kinds of localization modes in single crystals. ...
  • On the application of strain gradient crystal plasticity to study strain localization phenomena in single crystals 
    Communication sans acte
    CAI, Lei; ccJEBAHI, Mohamed; ccABED-MERAIM, Farid  (2021)
    Strain localization is an important plastic instability process occurring prior to fracture. It is usually observed in the form of narrow bands of intense plastic shear strain in deformed bodies undergoing severe inhomogeneous ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales