• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
  • Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Global transition dynamics of flow in a lid-driven cubical cavity

Article dans une revue avec comité de lecture
Auteur
RANJAN, Rajesh
579939 Department of Mechanical and Aerospace Engineering [Ohio State University] [OSU]
UNNIKRISHNAN, Sasidharan
6406 Florida State University [Tallahassee] [FSU]
GAITONDE, Datta
579939 Department of Mechanical and Aerospace Engineering [Ohio State University] [OSU]
ccROBINET, Jean-Christophe
134975 Laboratoire de Dynamique des Fluides [DynFluid]

URI
http://hdl.handle.net/10985/20501
DOI
10.1007/s00162-021-00565-z
Date
2021
Journal
Theoretical and Computational Fluid Dynamics

Résumé

The dynamics of a fully three-dimensional lid-driven cubical cavity (3D-LDC) flow at several postcritical conditions, i.e., beyond the first bifurcation, are elucidated using both linear and nonlinear analyses. When the Reynolds number is increased beyond the critical value, symmetry breaks down intermittently with subsequent gradual growth in spanwise inhomogeneity. This results in crossflow as well as pronounced secondary flow due to enhanced imbalance between centrifugal and pressure forces. Thus, while a stable solution is obtained at Re = 1900 (Reynolds number based on lid velocity and cavity side length), nonlinear analysis identifies intermittent and nearly saturated regimes at Re = 2100 and Re = 3000, respectively. These changes in the regime are examined by considering five basic states at different Reynolds numbers starting from Re = 1900. At the lowest Reynolds number, linear analysis yields only symmetric modes, characterized by Taylor–Görtler-like (TGL) vortices. However, at Re = 2100, the intermittent breakdown of symmetry results in the emergence of an antisymmetric low-frequency mode apart from primary high-frequency mode. The frequencies of both these modes are numerically close to those obtained from corresponding nonlinear simulations. When the Reynolds number is increased even further, the TGL structures drift under the influence of the crossflow to occupy the previously structureless region near the wall. The frequency of each mode decreases with increase in Re; between 1900 and 3000, the frequency of the primary mode changes by more than 20%. Furthermore, the spatial support of each mode becomes larger within the cavity. Both primary and secondary modes are increasingly destabilized with Re; however, the secondary antisymmetric mode is destabilized at a higher rate. The current study thus provides a comprehensive picture of the overall dynamics of 3D-LDC flows in pre- and post-bifurcation regimes in an extended Re range not considered hitherto.

Fichier(s) constituant cette publication

Nom:
DYNFLUID_TCFD_2021_ROBINET.pdf
Taille:
4.725Mo
Format:
PDF
Fin d'embargo:
2021-09-20
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Dynamique des Fluides (DynFluid)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Global Stability Analyses Unraveling Roughness-induced Transition Mechanisms 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; LERICHE, Emmanuel; ccROBINET, Jean-Christophe; ccLOISEAU, Jean-Christophe (Elsevier, 2015)
    The linear global instability and resulting transition to turbulence induced by a cylindrical roughness element of heighth and diameter d=3h immersed within an incompressible boundary layer flow along a flat plate is ...
  • Influence of the Shape on the Roughness-Induced Transition 
    Ouvrage scientifique
    CHERUBINI, Stefania; LERICHE, Emmanuel; ccROBINET, Jean-Christophe; ccLOISEAU, Jean-Christophe (Springer, 2015)
    lobal instability analysis of the three-dimensional flow past two rough- ness elements of different shape, namely a cylinder and a bump, is presented. In both cases, the eigenspectrum is made of modes characterised by a ...
  • Bifurcation analysis and frequency prediction in shear-driven cavity flow 
    Article dans une revue avec comité de lecture
    BENGANA, Y.; TUCKERMAN, L. S.; ccROBINET, Jean-Christophe; ccLOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2019)
    A comprehensive study of the two-dimensional incompressible shear-driven flow in an open square cavity is carried out. Two successive bifurcations lead to two limit cycles with different frequencies and different numbers ...
  • Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; LERICHE, Emmanuel; ccROBINET, Jean-Christophe; ccLOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2014)
    The linear global instability and resulting transition to turbulence induced by an isolated cylindrical roughness element of height h and diameter d immersed within an incompressible boundary layer flow along a flat plate ...
  • Successive bifurcations in a fully three-dimensional open cavity flow 
    Article dans une revue avec comité de lecture
    PICELLA, Francesco; LUSSEYRAN, F; CHERUBINI, Stefania; PASTUR, L; ccROBINET, Jean-Christophe; ccLOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2018)
    The transition to unsteadiness of a three-dimensional open cavity flow is investigated using the joint application of direct numerical simulations and fully three-dimensional linear stability analyses, providing a clear ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales