• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-Driven Modeling for Multiphysics Parametrized Problems-Application to Induction Hardening Process

Article dans une revue avec comité de lecture
Auteur
DEROUICHE, Khouloud
GAROIS, Sevan
CHAMPANEY, Victor
DAOUD, Monzer
549864 Institut de recherche technologique Matériaux Métallurgie et Procédés [IRT M2P]
TRAIDI, Khalil
505477 Safran Tech
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/20595
DOI
10.3390/met11050738
Date
2021
Journal
Metals

Résumé

Data-driven modeling provides an efficient approach to compute approximate solutions for complex multiphysics parametrized problems such as induction hardening (IH) process. Basically, some physical quantities of interest (QoI) related to the IH process will be evaluated under real-time constraint, without any explicit knowledge of the physical behavior of the system. Hence, computationally expensive finite element models will be replaced by a parametric solution, called metamodel. Two data-driven models for temporal evolution of temperature and austenite phase transformation, during induction heating, were first developed by using the proper orthogonal decomposition based reduced-order model followed by a nonlinear regression method for temperature field and a classification combined with regression for austenite evolution. Then, data-driven and hybrid models were created to predict hardness, after quenching. It is shown that the results of artificial intelligence models are promising and provide good approximations in the low-data limit case.

Fichier(s) constituant cette publication

Nom:
PIMM_M_2021_DEROUICHE.pdf
Taille:
2.680Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Real-time prediction by data-driven models applied to induction heating process 
    Article dans une revue avec comité de lecture
    DEROUICHE, Khouloud; DAOUD, Monzer; TRAIDI, Khalil; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2022-05-27)
    Data-driven modeling approach constitutes an appealing alternative to the finite element method for optimizing complex multiphysics parametrized problems. In this context, this paper aims at proposing a parametric solution ...
  • Artificial intelligence modeling of induction contour hardening of 300M steel bar and C45 steel spur-gear 
    Article dans une revue avec comité de lecture
    ccGAROIS, Sevan; DAOUD, Monzer; TRAIDI, Khalil; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2023-04)
    Induction hardening is a heat surface treatment technique widely employed for steel components in order to improve their fatigue life without affecting the metallurgy of the bulk material. The control of the treated ...
  • Learning data-driven reduced elastic and inelastic models of spot-welded patches 
    Article dans une revue avec comité de lecture
    REILLE, Agathe; CHAMPANEY, Victor; DAIM, Fatima; TOURBIER, Yves; HASCOET, Nicolas; GONZALEZ, David; ccCUETO, Elias; DUVAL, Jean Louis; ccCHINESTA SORIA, Francisco (EDP Sciences, 2021)
    Solving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized ...
  • Empowering optimal transport matching algorithm for the construction of surrogate parametric metamodel 
    Article dans une revue avec comité de lecture
    ccJACOT, Maurine; CHAMPANEY, Victor; ccTORREGROSA JORDAN, Sergio; ccCORTIAL, Julien; ccCHINESTA SORIA, Francisco (EDP Sciences, 2024-03)
    Resolving Partial Differential Equations (PDEs) through numerical discretization methods like the Finite Element Method presents persistent challenges associated with computational complexity, despite achieving a satisfactory ...
  • Identification of material parameters in low-data limit: application to gradient-enhanced continua 
    Article dans une revue avec comité de lecture
    NGUYEN, Duc-Vinh; ccJEBAHI, Mohamed; CHAMPANEY, Victor; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2024-01)
    Due to the growing trend towards miniaturization, small-scale manufacturing processes have become widely used in various engineering fields to manufacture miniaturized products. These processes generally exhibit complex ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales