• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-time prediction by data-driven models applied to induction heating process

Article dans une revue avec comité de lecture
Author
DEROUICHE, Khouloud
DAOUD, Monzer
549864 Institut de recherche technologique Matériaux Métallurgie et Procédés [IRT M2P]
TRAIDI, Khalil
505477 Safran Tech
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/22219
DOI
10.1007/s12289-022-01691-7
Date
2022-05-27
Journal
International Journal of Material Forming

Abstract

Data-driven modeling approach constitutes an appealing alternative to the finite element method for optimizing complex multiphysics parametrized problems. In this context, this paper aims at proposing a parametric solution for the temperature-time evolution during the multiphysics induction heating process by using a data-driven non-intrusive modeling approach. To achieve this goal, firstly, a set of synthetic solutions was collected, at some sparse sensors in the space domain and for properly selected process parameters, by solving the full-order finite element models using FORGE® software. Then, the gappy proper orthogonal decomposition method was used to complete the missing data. Next, the proper orthogonal decomposition method coupled with the nonlinear sparse proper generalized decomposition regression method was applied to find a low-dimensional space onto which the original solutions were projected and a model for the low-dimensional representations was, therefore, created. Hence, a real-time prediction of the temperature-time evolution and for any new process parameters could be efficiently computed at the predefined positions (sensors) in the space domain. Finally, spatial interpolation was carried out to extend the solutions everywhere in the spatial domain by applying a strategy based on the nonlinear dimensionality reduction by locally linear embedding method and the proper orthogonal decomposition method with radial basis functions interpolation. It was shown that the results are promising and the applied approaches provide good approximations in the low-data limit case.

Files in this item

Name:
PIMM_IJMF_2022_DEROUICHE.pdf
Size:
4.365Mb
Format:
PDF
Embargoed until:
2022-12-01
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Artificial intelligence modeling of induction contour hardening of 300M steel bar and C45 steel spur-gear 
    Article dans une revue avec comité de lecture
    ccGAROIS, Sevan; DAOUD, Monzer; TRAIDI, Khalil; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2023-04)
    Induction hardening is a heat surface treatment technique widely employed for steel components in order to improve their fatigue life without affecting the metallurgy of the bulk material. The control of the treated ...
  • Data-Driven Modeling for Multiphysics Parametrized Problems-Application to Induction Hardening Process 
    Article dans une revue avec comité de lecture
    DEROUICHE, Khouloud; GAROIS, Sevan; CHAMPANEY, Victor; DAOUD, Monzer; TRAIDI, Khalil; ccCHINESTA SORIA, Francisco (MDPI AG, 2021)
    Data-driven modeling provides an efficient approach to compute approximate solutions for complex multiphysics parametrized problems such as induction hardening (IH) process. Basically, some physical quantities of interest ...
  • Complex Algorithms for Data-Driven Model Learning in Science and Engineering 
    Article dans une revue avec comité de lecture
    MONTÁNS, Francisco J.; GÓMEZ-BOMBARELLI, Rafael; KUTZ, J. Nathan; ccCHINESTA SORIA, Francisco (Hindawi Limited, 2019)
    no abstract
  • Data-driven modeling and learning in science and engineering 
    Article dans une revue avec comité de lecture
    MONTÁNS, Francisco J.; ccCHINESTA SORIA, Francisco; GÓMEZ-BOMBARELLI, Rafael; KUTZ, J. Nathan (Elsevier Masson, 2019)
    In the past, data in which science and engineering is based, was scarce and frequently obtained by experiments proposed to verify a given hypothesis. Each experiment was able to yield only very limited data. Today, data ...
  • Complex Algorithms for Data-Driven Model Learning in Science and Engineering 
    Article dans une revue avec comité de lecture
    MONTÁNS, Francisco Javier; GÓMEZ-BOMBARELLI, Rafael; KUTZ, Jose Nathan; ccCHINESTA SORIA, Francisco (Wiley, 2019)
    In their first centuries, scientific and engineering develop-ments were dominated by empirical understanding which encapsulated the first paradigm of scientific discovery. After the Renaissance, the scientific revolution ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales