• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Foreword

Article dans une revue avec comité de lecture
Author
ccCUETO, Elias
95355 Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
LADEVÈZE, Pierre
523723 Ecole Normale Supérieure Paris-Saclay [ENS Paris Saclay]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/20601
DOI
10.1016/j.crme.2019.11.016
Date
2019
Journal
Comptes Rendus Mécanique

Abstract

No abstract

Files in this item

Name:
PIMM_CRM_2019_CHINESTA.pdf
Size:
226.0Kb
Format:
PDF
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Numerical experiments on unsupervised manifold learning applied to mechanical modeling of materials and structures 
    Article dans une revue avec comité de lecture
    IBANEZ, Ruben; GILORMINI, Pierre; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2020)
    The present work aims at analyzing issues related to the data manifold dimensionality. The interest of the study is twofold: (i) first, when too many measurable variables are considered, manifold learning is expected to ...
  • Crossing Scales: Data-Driven Determination of the Micro-scale Behavior of Polymers From Non-homogeneous Tests at the Continuum-Scale 
    Article dans une revue avec comité de lecture
    AMORES, Víctor J.; MONTÁNS, Francisco J.; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (Frontiers Media SA, 2022-05)
    We propose an efficient method to determine the micro-structural entropic behavior of polymer chains directly from a sufficiently rich non-homogeneous experiment at the continuum scale. The procedure is developed in 2 ...
  • Thermodynamics-informed neural networks for physically realistic mixed reality 
    Article dans une revue avec comité de lecture
    ccHERNÁNDEZ, Quercus; ccBADIAS, Alberto; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    The imminent impact of immersive technologies in society urges for active research in real-time and interactive physics simulation for virtual worlds to be realistic. In this context, realistic means to be compliant to the ...
  • Regularized regressions for parametric models based on separated representations 
    Article dans une revue avec comité de lecture
    ccSANCARLOS, Abel; CHAMPANEY, Victor; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (Springer Open, 2023-03)
    Regressions created from experimental or simulated data enable the construction of metamodels, widely used in a variety of engineering applications. Many engineering problems involve multi-parametric physics whose corresponding ...
  • Port-metriplectic neural networks: thermodynamics-informed machine learning of complex physical systems 
    Article dans une revue avec comité de lecture
    ccHERNÁNDEZ, Quercus; ccBADIAS, Alberto; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    We develop inductive biases for the machine learning of complex physical systems based on the port-Hamiltonian formalism. To satisfy by construction the principles of thermodynamics in the learned physics (conservation of ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales