Empowering Materials Processing and Performance from Data and AI
Article dans une revue avec comité de lecture
Abstract
Third millennium engineering is addressing new challenges in materials sciences and engineering [...]
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureAMORES, Víctor J.; MONTÁNS, Francisco J.; CUETO, Elías; CHINESTA, Francisco (Frontiers Media SA, 2022-05)We propose an efficient method to determine the micro-structural entropic behavior of polymer chains directly from a sufficiently rich non-homogeneous experiment at the continuum scale. The procedure is developed in 2 ...
-
Article dans une revue avec comité de lectureAMMAR, Amine; GHNATIOS, Chady; DELPLACE, Frank; BARASINSKI, Anais; DUVAL, Jean-Louis; CUETO, Elias; CHINESTA, Francisco (Wiley, 2020)Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion ...
-
Ouvrage scientifiqueCHINESTA, Francisco; CESCOTTO, Serge; CUETO, Elias; LORONG, Philippe (WILEY, 2011)The Natural Element Method (NEM) is halfway between meshless methods and the finite element method. This book presents a recent state of the art on the foundations and applications of the meshless natural element method ...
-
Communication avec acteNASRI, Mohamed Aziz; AGUADO, Jose Vicente; AMMAR, Amine; CUETO, Elias; CHINESTA, Francisco; MOREL, Franck; ROBERT, Camille; EL AREM, Saber (Key Engineering Materials, 2015)Forming processes usually involve irreversible plastic transformations. The calculation in that case becomes cumbersome when large parts and processes are considered. Recently Model Order Reduction techniques opened new ...
-
Article dans une revue avec comité de lectureHERNÁNDEZ, Quercus; BADÍAS, Alberto; GONZÁLEZ, David; CHINESTA, Francisco; CUETO, Elías (Elsevier, 2021)We develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of ...